Skip to main content
Log in

Using Mandelstam–Brillouin Spectroscopy to Study Energy-Efficient Devices for Processing Information Signals on the Basis of Magnon Straintronics

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The possibility of controlling the spin-waveguide modes of propagation of a strain signal in lateral arrays of a magnon-crystal structure with a piezoelectric layer is shown via Mandelstam–Brillouin spectroscopy of magnetic materials with spatial and frequency resolution. The possibility of controlling the dipole spin-wave coupling in a lateral array of ferromagnetic strips by creating local deformations in the region of localization of spin-wave excitations is demonstrated. It is shown that changing the absolute magnitude and sign of the electric field allows effective control over the properties of propagating spin waves and the spatial distribution of the intensity of dynamic magnetization in the lateral structure at frequencies in the spectrum of surface magnetostatic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Nikitov, S.A., Safin, A.R., Kalyabin, D.V., et al., Phys.—Usp., 2020, vol. 63, p. 945.

    Article  ADS  Google Scholar 

  2. Nikitov, S.A., Kalyabin, D.V., Lisenkov, I.V., et al., Phys.—Usp., 2015, vol. 58, no. 10, p. 1002.

    Article  ADS  Google Scholar 

  3. Kruglyak, V.V., Demokritov, S.O., and Grundler, D., J. Phys. D: Appl. Phys., 2010, vol. 43, 264001.

    Article  ADS  Google Scholar 

  4. Serga, A.A., Chumak, A.V., and Hillebrands, B., J. Phys. D: Appl. Phys., 2010, vol. 43, 264002.

    Article  ADS  Google Scholar 

  5. Khitun, A., Bao, M., and Wang, K.L., J. Phys. D: Appl. Phys., 2010, vol. 43, 264005.

    Article  ADS  Google Scholar 

  6. Awschalom, D.D. and Flatte, M.E., Nat. Phys., 2007, vol. 3, p. 153.

    Article  Google Scholar 

  7. Chappert, C., Fert, A., and Frédéric Nguyen Van Dau, Nat. Mater., 2007, vol. 6, p. 813.

    Article  ADS  Google Scholar 

  8. Bader, S.D. and Parkin, S.S.P., Annu. Rev. Condens. Matter Phys., 2010, vol. 1, p. 71.

    Article  ADS  Google Scholar 

  9. Bukharaev, A.A., Zvezdin, A.K., Pyatakov, A.P., and Fetisov, Yu.K., Phys.—Usp., 2018, vol. 61, p. 1175.

    Article  ADS  Google Scholar 

  10. Sander, D., Valenzuela, S.O., and Makarov, D., J. Phys. D: Appl. Phys., 2017, vol. 50, 363001.

    Article  Google Scholar 

  11. Fetisov, Y.K. and Srinivasan, G., Appl. Phys. Lett., 2006, vol. 88, 143503.

    Article  ADS  Google Scholar 

  12. Fetisov, Y.K. and Srinivasan, G., Appl. Phys. Lett., 2008, vol. 93, 033508.

    Article  ADS  Google Scholar 

  13. Ustinov, A.B., Fetisov, Y.K., and Srinivasan, G., Tech. Phys. Lett., 2008, vol. 34, p. 593.

    Article  ADS  Google Scholar 

  14. Ustinov, A.B., Fetisov, Y.K., Lebedev, S.V., and Srinivasan, G., Tech. Phys. Lett., 2010, vol. 36, p. 166.

    Article  ADS  Google Scholar 

  15. Sadovnikov, A.V., Beginin, E.N., Sheshukova, S.E., et al., Phys. Rev. B, 2019, vol. 99, 054424.

    Article  ADS  Google Scholar 

  16. Sadovnikov, A.V., Grachev, A.A., Beginin, E.N., et al., Phys. Rev. Appl., 2017, vol. 7, 014013.

    Article  ADS  Google Scholar 

  17. Sadovnikov, A.V., Grachev, A.A., Beginin, E.N., et al., IEEE Trans. Magn., 2017, vol. 53, 2801804.

    Google Scholar 

  18. Sadovnikov, A.V., Grachev, A.A., Sheshukova, S.E., et al., Phys. Rev. Lett., 2018, vol. 120, 257203.

    Article  ADS  Google Scholar 

  19. Spin Wave Confinement: Propagating Waves, Demokritov, S.O., Ed., Jenny Stanford, 2017.

    Google Scholar 

  20. Shikoh, E., Ando, K., Saitoh, E., et al., Phys. Rev. Lett., 2013, vol. 110, 127201.

    Article  ADS  Google Scholar 

  21. Onbasli, M.C., Kehlberger, A., Kim, D.H., et al., APL Mater., 2014, vol. 2, 106102.

    Article  ADS  Google Scholar 

  22. Barabanenkov, Y., Osokin, S., Kalyabin, D., and Nikitov, S., Phys. Rev. B, 2016, vol. 94, 184409.

    Article  ADS  Google Scholar 

  23. Tikhonov, V.V. and Nikitov, S.A., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 8, p. 969.

    Article  Google Scholar 

Download references

Funding

An experimental study of the methods for controlling a spin-wave signal in a three-dimensional magnon-crystal structure with a piezoelectric layer was supported by the Russian Science Foundation (project no. 20-79-10191). The fabrication of the reference structure was carried out within the framework of a grant from the President of the Russian Federation (project no. MK-1870.2020.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sadovnikov.

Additional information

Translated by V. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, A.V., Nikitov, S.A. Using Mandelstam–Brillouin Spectroscopy to Study Energy-Efficient Devices for Processing Information Signals on the Basis of Magnon Straintronics. Bull. Russ. Acad. Sci. Phys. 85, 595–598 (2021). https://doi.org/10.3103/S1062873821060216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821060216

Navigation