Skip to main content
Log in

Using the Laser Irradiation of Amorphous Alloys to Create Amorphous–Nanocrystalline Composites

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

An excimer KrF laser and specially developed modes of irradiation are used to achieve different degrees of crystallization for the surfaces and volumes of melt-quenched ribbons of cobalt- and iron-based amorphous alloy. The effect the geometry and parameters of laser irradiation have on the mechanical behavior of the studied amorphous alloy and amorphous–crystalline composites is studied relative to the evolution of their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Greer, A.L., in Physical Metallurgy, Amsterdam: Elsevier, 2014, vol. 1, p. 305.

    Google Scholar 

  2. Glezer, A.M. and Permyakova, I.E., Melt-Quenched Nanocrystals, Boca Raton: CRC, 2013.

    Book  Google Scholar 

  3. Egami, T., Iwashita, T., and Dmowski, W., Metals, 2013, vol. 3, no. 1, p. 77.

    Article  Google Scholar 

  4. Aronin, A. and Abrosimova, G., Metals, 2020, vol. 10, no. 3, 358.

    Article  Google Scholar 

  5. Glezer, A.M., Potekaev, A.I., and Cheretaeva, A.O., Thermal and Time Stability of Amorphous Alloys, Boca Raton: CRC, 2017.

    Book  Google Scholar 

  6. Borodako, K.A., Shelyakov, A.V., Sitnikov, N.N., et al., J. Phys.: Conf. Ser., 2020, vol. 1461, no. 1, 012018.

    Google Scholar 

  7. Jiao, Y., Brousseau, E., Shen, X., et al., J. Mater. Process. Technol., 2020, vol. 283, 116714.

    Article  Google Scholar 

  8. Shlykova, A.A., Fedorov, V.A., Gasanov, M.F., et al., Vektor Nauki Togliatti Gos. Univ., 2018, vol. 43, no. 1, p. 90.

    Article  Google Scholar 

  9. Permyakova, I.E., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 9, p. 1086.

    Article  Google Scholar 

  10. Permyakova, I.E., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 7, p. 839.

    Article  Google Scholar 

  11. Glezer, A.M., Permyakova, I.E., Gromov, V.V., et al., Mekhanicheskoe povedenie amorfnykh splavov (Mechanical Behavior of Amorphous Alloys), Novokuznetsk: Sib. Gos. Ind. Univ., 2006.

  12. Permyakova, I.E., Glezer, A.M., and Grigorovich, K.V., Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 10, p. 996.

    Article  Google Scholar 

  13. Wetzig, K., Pompe, W., Fiedler, H., et al., Cryst. Res. Technol., 1983, vol. 18, no. 9, p. 1181.

    Article  Google Scholar 

  14. Alekhin, V.P. and Khonik, V.A., Struktura i fizicheskie zakonomernosti deformatsii amorfnykh splavov (Structure and Physical Laws of Deformation of Amorphous Alloys), Moscow: Metallurgiya, 1992.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Associate Professor T.N. Pluzhnikova at Derzhavin Tambov State University for her help and advice on our tensile tests.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-08-00341а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Permyakova.

Additional information

Translated by N. Podymova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permyakova, I.E., Ivanov, A.A. & Shelyakov, A.V. Using the Laser Irradiation of Amorphous Alloys to Create Amorphous–Nanocrystalline Composites. Bull. Russ. Acad. Sci. Phys. 85, 755–759 (2021). https://doi.org/10.3103/S1062873821070170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873821070170

Navigation