Skip to main content
Log in

Methods of Production the Isotope 67Cu

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The nuclear reactions on zinc isotopes leading to the formation of the medical theranostic isotope 67Cu have been investigated. Model calculations were made using the TALYS1.9 code. The results are compared with the published experimental data. The comparison of calculated and experimental data showed a satisfactory agreement in the case of the proton-nuclear reactions. In the case of the calculations of the photonuclear reactions, the essential differences are observed at the maximums of the excitation functions. The calculated data in the case of the (γ, n) reactions do not reveal the widths and structure of the excitation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bergmann, H., Kroiss, A., and Sinzinger, H. (Eds.), Radioactive Isotopes in Clinical Medicine and Research, New York: Springer-Verlag, 1997; Saha Gopal B., Fundamentals of Nuclear Pharmacy, New York: Springer-Verlag, 1999.

  2. Yeong, C.-H., Cheng, M.-H., and Ng, K.-H., J. Zhejiang Univ. Sci. B., 2014, vol. 15(10), p. 845.

    Article  Google Scholar 

  3. Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods,Vienna, IAEA Tec. Rep. 468, 2009.

  4. Qaim, S.M., Radiochim. Acta, 2001, vol. 89, p. 297.

    Google Scholar 

  5. DeNardo, S.J., DeNardo, G.I., Kukis, D.I., et al., J. Nucl. Med, 1999, vol. 40, p. 302.

    Google Scholar 

  6. Shen, S., DeNardo, G.I., DeNardo, S.J., et al., J. Nucl. Med., 1996, vol. 37, p. 146.

    Google Scholar 

  7. Blower, P.J., Lewis, J.S., and Zweit J., Nucl. Med. Biol., 1996, vol. 23, p. 957.

    Article  Google Scholar 

  8. Johnson, P.E., Milne, D.B., and Lykken, G.I., Am. J. Clin. Nutr. 1992, vol. 56, p. 917.

    Article  Google Scholar 

  9. Anderson, C.J., Green, M.A., Fujibayashi, Y., Handbook of Radiopharmaceuticals. John Wiley & Sons Inc, Hoboken, NJ., pp. 401–422 (2003).

    Google Scholar 

  10. Smit, N.A., Bowers, D.L., and Ehst, D.A., Appl. Rad. Isot., 2012, vol. 70, p. 2377.

    Article  Google Scholar 

  11. Kastleiner, S., Coenen, H.H., and Qaim, S.M., Radiochem. Acta, 1999, vol. 84, p. 107.

    Article  Google Scholar 

  12. Mirzadeh, S., Mausner, L.F., and Srivastava, S.C., Appl. Radiat. Isot., 1986, vol. 37, p. 29.

    Article  Google Scholar 

  13. Marceau, N., Kruck, T.P.A., McConnell, D.B., and Aspin, N., Appl. Radiat. Isot., 1970, vol. 21, p. 667.

    Article  Google Scholar 

  14. Koning, A., Hilaire, S., and S. Goriely, TALYS-1.9 A Nuclear Reaction Program, 2017.

  15. https://www-nds.iaea.org/exfor/exfor.htm.

  16. Pupillo, G., Esposito, J., Gambaccini, M., et al., J. Radioanal. Nucl. Chem., 2014, vol. 302, p. 911.

    Article  Google Scholar 

  17. Szelecsenyi, F., Boothe, T.E., Takacs, S., et al., Appl. Rad. Isot.,1998, vol. 49, p. 1005.

    Article  Google Scholar 

  18. Hilgers, K., Stoll, T., Skakun, Y., et al., Appl. Rad. Isot., 2003, vol. 59, p. 343.

    Article  Google Scholar 

  19. Levkovskij, V.N., Act.Cs. By Protons and Alphas, Moscow, 1991.

    Google Scholar 

  20. Morrison, D.L., and Caretto, A.A., Phys. Rev., 1962, vol. 127, p. 1731.

    Article  ADS  Google Scholar 

  21. Morrison, D.L., and Caretto, A.A., Phys. Rev., 1964, vol. 133, p. B1165.

    Article  ADS  Google Scholar 

  22. Sioufi, A.El., Erdos, P., and Stoll, P., Helv. Phys. Acta, 1957, vol. 30, p. 264.

    Google Scholar 

  23. Goryachev, A.M., and Zalesnyy, G.N., Voprosy Teoreticheskoyi Yadernoy Fiziki, 1982, vol.1982(8), p. 121.

    Google Scholar 

  24. DelBianco, W.E., and Stephens, W.E., Phys. Rev., 1962, vol. 26, p. 709.

    Article  ADS  Google Scholar 

  25. Owen, D.G., Muirhead, E.G., and Spicer, B.M., Nucl. Phys. A, 1968, vol. 122, p. 177.

    Article  ADS  Google Scholar 

  26. Rodrigues, T.E., Arruda-Neto, J.D.T., Carvalheiro, Z., et al., Phys. Rev. C, 2003, vol. 68, p. 014618.

    Article  ADS  Google Scholar 

  27. Danagulyan, A.S., Hovhannisyan, G.H., and Bakhshiyan, T.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2017, Vol. 52, No. 4, p. 305.

    Google Scholar 

  28. Danos, M., Ishkhanov, B.S, Yudin N.P., and Eramzhyan, R.A., Phys.-Usp., 1995, vol. 38(12), p. 1297.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Hovhannisyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hovhannisyan, G.H., Stepanyan, A.V., Saryan, E.R. et al. Methods of Production the Isotope 67Cu. J. Contemp. Phys. 55, 183–190 (2020). https://doi.org/10.3103/S106833722003010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833722003010X

Keywords:

Navigation