Skip to main content
Log in

Individual solution processes while solving addition and multiplication math facts in adults

  • Published:
Memory & Cognition Aims and scope Submit manuscript

Abstract

Contrary to predictions of current solution process models, adults used a variety of procedures other than retrieval to solve addition and multiplication math facts. Predictors assumed to capture retrieval processes posited by such models did account for a substantial proportion of variance in averaged retrieval solution times. But most of the variance in individual participants’ retrieval times remained unaccounted for. Cross-operation associations in patterns of strategy use and retrieval latencies were obtained. Adults with stronger higher level math achievement were more likely to use retrieval, solved math facts faster and less variably, and executed retrieval processes posited by current solution process models faster than participants with less math attainment. The results are explained within the context of the adaptive strategy choice model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory.Cognition,44, 75–106.

    Article  PubMed  Google Scholar 

  • Ashcraft, M. H., Donley, R. D., Halas, M. A., & Vakali, M. (1992). Working memory, automaticity, and problem difficulty. In J. I. D. Campbell (Ed.),The nature and origins of mathematical skills (pp. 301–329). Amsterdam: Elsevier, North-Holland.

    Chapter  Google Scholar 

  • Baroody, A. J. (1993). Early mental multiplication performance and the role of relational knowledge in mastering combinations involving “two.”Learning & Instruction,3, 93–111.

    Article  Google Scholar 

  • Campbell, J. I. D., & Graham, D. J. (1985). Mental multiplication skill: Structure, process, and acquisition.Canadian Journal of Psychology,39, 338–366.

    Article  Google Scholar 

  • Campbell, J. I. D., & Oliphant, M. (1992). Representation and retrieval of arithmetic facts: A network interference model and simulation. In J. I. D. Campbell (Ed.),The nature and origins of mathematical skills (pp. 331–364). Amsterdam: Elsevier, North-Holland.

    Chapter  Google Scholar 

  • Cooney, J. B., Swanson, H. L., & Ladd, S. F. (1988). Acquisition of mental multiplication skill: Evidence for the transition between counting and retrieval strategies.Cognition & Instruction,5, 323–345.

    Article  Google Scholar 

  • Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components.Psychological Bulletin,114, 345–362.

    Article  PubMed  Google Scholar 

  • Geary, D. C., & Widaman, K. F. (1987). Individual differences in cognitive arithmetic.Journal of Experimental Psychology: General,116, 154–171.

    Article  Google Scholar 

  • Geary, D. C., & Widaman, K. F. (1992). Numerical cognition: On the convergence of componential and psychometric models.Intelligence,16, 47–80.

    Article  Google Scholar 

  • Geary, D. C., Widaman, K. F., & Little, T. D. (1986). Cognitive addition and multiplication: Evidence for a single memory network.Memory & Cognition,14, 478–487.

    Article  Google Scholar 

  • Geary, D. C., & Wiley, J. G. (1991). Cognitive addition: Strategy choice and speed of processing differences in young and elderly adults.Psychology & Aging,6, 474–483.

    Article  Google Scholar 

  • Hecht, S. A. (1998). Toward an information processing account of individual differences in fraction skills.Journal of Educational Psychology,90, 1–18.

    Article  Google Scholar 

  • Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity.Acta Psychologica,86, 199–225.

    Article  PubMed  Google Scholar 

  • LeFevre, J. A., Bisanz, J., Daley, K. E., Buffone, L., & Sadesky, G. S. (1996). Multiple solution routes to solution of single-digit multiplication problems.Journal of Experimental Psychology: General,125, 284–306.

    Article  Google Scholar 

  • LeFevre, J. A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults.Journal of Experimental Psychology: Learning, Memory, & Cognition,22, 216–230.

    Article  Google Scholar 

  • Lorch, R. F., & Meyers, J. L. (1990). Regression analyses of repeated measures data in cognitive research.Journal of Experimental Psychology: Learning, Memory, & Cognition,16, 149–157.

    Article  Google Scholar 

  • McCloskey, M., Harley, W., & Sokol, S. M. (1991). Models of arithmetic fact retrieval: An evaluation in light of findings from normal and brain-damaged participants.Journal of Experimental Psychology: Learning, Memory, & Cognition,17, 377–397.

    Article  Google Scholar 

  • Miller, K. F., & Paredes, D. R. (1990). Starting to add worse: Effects of learning to multiply on children’s addition.Cognition,37, 213–242.

    Article  PubMed  Google Scholar 

  • Miller, K. [F.], Perlmutter, M., & Keating, D. (1984). Cognitive arithmetic: Comparison of operations.Journal of Experimental Psychology: Learning, Memory, & Cognition,10, 46–60.

    Article  Google Scholar 

  • Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition.Journal of Experimental Psychology: General,116, 250–264.

    Article  Google Scholar 

  • Siegler, R. S. (1988a). Individual differences in strategy choices: Good students, not-so-good students, and perfectionists.Child Development,59, 833–851.

    Article  PubMed  Google Scholar 

  • Siegler, R. S. (1988b). Strategy choice procedures and the development of multiplication skill.Journal of Experimental Psychology: General,117, 258–275.

    Article  Google Scholar 

  • Siegler, R. S., & Shipley, E. (1995). Variation, selection, and cognitive change. In G. Halford & T. Simon (Eds.),Developing cognitive competence: New approaches to process modeling (pp. 31–76). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1994). Development of reading-related phonological processing abilities: New evidence of bidirectional causality from a latent variable longitudinal study.Developmental Psychology,30, 73–87.

    Article  Google Scholar 

  • Widaman, K. F., & Little, T. D. (1992). The development of skill in mental arithmetic: An individual differences approach. In J. I. D. Campbell (Ed.),The nature and origins of mathematical skills. Amsterdam: Elsevier, North-Holland.

    Google Scholar 

  • Widaman, K. F., Little, T. D., Geary, D. C., & Cormier, P. (1992). Individual differences in the development of skill in mental addition: Internal and external validation of chronometric models.Learning & Individual Differences,4, 167–213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Alan Hecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecht, S.A. Individual solution processes while solving addition and multiplication math facts in adults. Mem Cogn 27, 1097–1107 (1999). https://doi.org/10.3758/BF03201239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BF03201239

Keywords

Navigation