Skip to main content
Log in

Influence of zinc doping in nickel ferrite nanoparticles synthesized by using an oxalic-acid-based precursor method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nanocrystalline Ni1−x Zn x Fe2O4 ( 0.0 ≤ x ≤ 0.8) ferrites have been synthesized by using an oxalic-acid-based precursor method. The X-ray diffraction (XRD) analysis revealed the formation of a single-phase spinel structure at very low annealing temperature. The particle size was observed to decrease with increasing Zn content x. The lattice constants was observed to increase with increasing Zn content x due to large ionic radii of the zinc ion when compared to that of the nickel ion. Magnetic measurements at room temperature revealed that the magnetization did not change monotonically with increasing Zn content x. The coercivity and the remanence were observed to decrease with increasing non-magnetic Zn content x. The observed magnetic properties may be due to a reduction in the number of exchange interactions and the nanocrystalline size with increasing Zn content x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. He, G. Song and J. Zhu, Mater. Lett. 59, 1941 (2005).

    Article  Google Scholar 

  2. Y. Matsuo, M. Inagaki, T. Tomozawa and F. Nakao, IEEE Trans. Magn. 37, 2359 (2001).

    Article  ADS  Google Scholar 

  3. P. S. Anil Kumar, J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande and S. K. Date, Mater. Lett. 27, 293 (1996).

    Article  Google Scholar 

  4. H. Su, H. Zhang, X. Tang, Y. Jing and Y. Liu, J. Magn. Magn. Mater. 310, 17 (2007).

    Article  ADS  Google Scholar 

  5. J. L. Dormann and M. Nogues, J. Phys.: Condens. Matter 2, 1223 (1990).

    Article  ADS  Google Scholar 

  6. N. Rezlescu, E. Rezlescu, C. Pasnicu and M. L. Craus, J. Phys. Condens. Matter 6, 5707 (1994).

    Article  ADS  Google Scholar 

  7. A. E. Virden and K. O’Grady,, J. Magn. Magn. Mater. 290–291, 868 (2005).

    Article  Google Scholar 

  8. A. M. El-Sayed, Ceramics Int. 28, 363 (2002).

    Article  Google Scholar 

  9. Z. Zhong, Q. Li, Y. Zhang, H. Zhong, M. Cheng and Y. Zhang, Powder Tech. 155, 193 (2005).

    Article  Google Scholar 

  10. R. Valenzuela, Z. Beji, F. Herbst and S. Ammal, J. Appl. Phys. 109, 07A329 (2011).

    Article  Google Scholar 

  11. S. E. Jacobo, S. Duhalde and H. R. Bertorello, J. Magn. Magn. Mater. 272–276, 2253 (2004).

    Article  Google Scholar 

  12. S. A. Saafar, T.-M. Meaz, E. H. El-Ghazzaway, M. K. El Nimr, M. M. Ayad and M. Bakr, J. Magn. Magn. Mater. 322, 2369 (2010).

    Article  ADS  Google Scholar 

  13. S. A. Morrison, C. L. Cahill, E. E. Carpenter, S. Calvin, R. Swaminathan, M. E. McHenry and V. G. Harris, J. Appl. Phys. 95, 6392 (2004).

    Article  ADS  Google Scholar 

  14. J. Sun, J. Li, G. Sun and W. Qu, Ceram. Intern. 28, 855 (2002).

    Article  Google Scholar 

  15. M. Younas, M. Atif, M. Nadeem, M. Siddique, M. Idrees and R. Grossinger, J. Phys. D: Appl. Phys. 44, 345402 (2011).

    Article  Google Scholar 

  16. S. Yan, J. Yin and E. Zhou. Colloids Surf. A: Physicochem. Eng. Aspects 287, 153 (2006).

    Article  Google Scholar 

  17. E. Manova, D. Paneva, B. Kunev, C. Estournes and I. Mitov, J. Phys: Conf. Series 217, 4 (2010).

    Article  Google Scholar 

  18. C. Upadhyay, D. Mishra, H. C. Verma, S. Anand and R. P. Das. J. Magn. Magn. Mater. 260, 188 (2003).

    Article  ADS  Google Scholar 

  19. A. T. Raghavender, Sagar E. Shirsath and K. Vijaya Kumar, J. Alloys Comp. 509, 7004 (2011).

    Article  Google Scholar 

  20. A. R. Bueno, M. L. Gregori and M. C. S. Nobrega, Mate. Chem. Phys. 105, 229 (2007).

    Article  Google Scholar 

  21. V. Sepelak, K. Tkacova, V. V. Boldyrev, S. Wibmann and K. D. Becker, Physica B: Condensed Matter. 234–236, 617 (1997).

    Article  Google Scholar 

  22. M. U. Rana, T. Abbas and F. A. Khawaja, Mater. Lett. 52, 389 (2002).

    Article  Google Scholar 

  23. V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst and K. D. Becker, J. Magn. Magn. Mater. 257, 377 (2003).

    Article  ADS  Google Scholar 

  24. R. H. Kodama, A. E. Berkowitz, E. J. McNiff and S. Foner, Phys. Rev. Lett. 77, 394 (1996).

    Article  ADS  Google Scholar 

  25. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B. 59, 6321 (1999).

    Article  ADS  Google Scholar 

  26. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (John Wiley and Sons Publications, Canada, 2009).

    Google Scholar 

  27. J. Smit and H. P. J. Wijn, “Ferrites” Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications (Phillips, Eindhoven, 1959), p. 149.

    Google Scholar 

  28. A. Goldman, Modern Ferrite Technology, second edition (Springer, U.S.A., 2006).

    Google Scholar 

  29. P. Yadoji, R. Peelamedu, D. Agrawal and R. Roy, Mater. Sci. Engin. B 98, 269 (2003).

    Article  Google Scholar 

  30. T. T. Srinivasan, P. Ravindranathan, L. E. Cross, R. Roy, R. E. Newnham, S. G. Sankar and K. C. Patil, J. Appl. Phys. 63, 3789 (1988).

    Article  ADS  Google Scholar 

  31. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, S120 (1959).

    Article  ADS  Google Scholar 

  32. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. Lond. A 240, 599 (1948) reprinted in IEEE Trans. Magn. 27, 3475 (1991).

    Article  ADS  MATH  Google Scholar 

  33. L. Yu, J. Zhang, Y. Liu, C. Jing and S. Cao, J. Magn. Magn. Mater. 288, 54 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Anjaneyulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjaneyulu, T., Raghavender, A.T., Kumar, K.V. et al. Influence of zinc doping in nickel ferrite nanoparticles synthesized by using an oxalic-acid-based precursor method. Journal of the Korean Physical Society 62, 1114–1118 (2013). https://doi.org/10.3938/jkps.62.1114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1114

Keywords

Navigation