Skip to main content

A Dynamic Straining Bioreactor for Collagen-Based Tissue Engineering

  • Chapter
Bioreactors for Tissue Engineering

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhouayri O, Lafage-Proust MH, Rattner A, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L. 1999. Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem 76:217–230.

    Article  PubMed  CAS  Google Scholar 

  • Arora PD, Narani N, McCulloch CA. 1999. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154:871–882.

    PubMed  CAS  Google Scholar 

  • Brown RA, Prajapati R, McGrouther DA, Yannas IV, Eastwood M. 1998. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 175:323–332.

    Article  PubMed  CAS  Google Scholar 

  • Brown RA, Sethi KK, Gwanmesia I, Raemdonck D, Eastwood M, Mudera V. 2002. Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta1 and-beta3: mechanoregulatory growth factors? Exp Cell Res 274:310–322.

    Article  PubMed  CAS  Google Scholar 

  • Brown RA, Talas G, Porter RA, McGrouther DA, Eastwood M. 1996. Balanced mechanical forces and microtubule contribution to fibroblast contraction. J Cell Physiol 169:439–447.

    Article  PubMed  CAS  Google Scholar 

  • Fredberg JJ, Inouye D, Miller B, Nathan M, Jafari S, Raboudi SH, Butler JP, Shore SA. 1997. Airway smooth muscle tidal stretches and dynamically determined contractile states. Am J Respir Crit Care Med 156:1752–9.

    PubMed  CAS  Google Scholar 

  • Girton TS, Oegema TR, Tranquillo RT. 1999. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J Biomed Mater Res 46:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell F. 1994. Fibroblasts myofibroblasts and wound contraction. Journal of Cell Biology 124:401–404.

    Article  PubMed  CAS  Google Scholar 

  • Kanda K, Matsuda T. 1994. In vitro reconstruction of hybrid arterial media with molecular and cellular orientations. Cell Transplant 3:537–545.

    PubMed  CAS  Google Scholar 

  • Kanda K, Matsuda T, Oka T. 1993a. In vitro reconstruction of hybrid vascular tissue. Hierarchic and oriented cell layers Asaio J 39:M561–565.

    CAS  Google Scholar 

  • Kanda K, Matsuda T, Oka T. 1993b. Mechanical stress induced cellular orientation and phenotypic modulation of 3-D cultured smooth muscle cells. Asaio J 39:M686–690.

    PubMed  CAS  Google Scholar 

  • Keeley FW, Bartoszewicz LA. 1995. Elastin in systemic and pulmonary hypertension. Ciba Found Symp 192:259–273; discussion 273–278.

    PubMed  CAS  Google Scholar 

  • Kim BS, Nikolovski J, Bonadio J, Mooney DJ. 1999. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17:979–83.

    Article  PubMed  CAS  Google Scholar 

  • L’Heureux N, Germain L, Labbe R, Auger FA. 1993. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg 17:499–509.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan CJ, Williams B. 2000. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta1. Hypertension 36:319–324.

    PubMed  CAS  Google Scholar 

  • Petroll WM, Cavanagh HD, Barry P, Andrews P, Jester JV. 1993. Quantitative analysis of stress fiber orientation during corneal wound contraction. J Cell Sci 104, Pt 2:353–363.

    PubMed  Google Scholar 

  • Seliktar D, Black RA, Vito RP, Nerem RM. 2000. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Seliktar D, Nerem RM, Galis ZS. 2001. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann Biomed Eng 29:923–934.

    Article  PubMed  CAS  Google Scholar 

  • Shelburne KB, Pandy MG. 1997. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J Biomech 30:163–176.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Ramamurthi A, Vesely I. 2002. Towards tissue engineering of a composite aortic valve. Biomed Sci Instrum 38:35–40.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Vesely I. 2004. Characterization of statically loaded tissue-engineered mitral valve chordae tendineae. Journal of Biomedical Materials Research 69A:26–39.

    Article  CAS  Google Scholar 

  • Shi Y, Vesely I. 2003. Fabrication of tissue engineered mitral valve chordae using directed collagen gel shrinkage. Tissue Engineering 96:1233–1242.

    Article  CAS  Google Scholar 

  • Stanley AG, Patel H, Knight AL, Williams B. 2000. Mechanical strain-induced human vascular matrix synthesis: the role of angiotensin II. J Renin Angiotensin Aldosterone Syst 1:32–35.

    PubMed  CAS  Google Scholar 

  • Tranquillo RT, Durrani MA, Moon AG. 1992. Tissue engineering science: consequences of cell traction force. Cytotechnology 10:225–250.

    Article  PubMed  CAS  Google Scholar 

  • Tranquillo RT, Girton TS, Bromberek BA, Triebes TG, Mooradian DL. 1996. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg CB, Bell E. 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400.

    PubMed  CAS  Google Scholar 

  • Williams B. 1998. Mechanical influences on vascular smooth muscle cell function. J Hypertens 16:1921–1929.

    Article  PubMed  CAS  Google Scholar 

  • Wilson E, Sudhir K, Ives HE. 1995. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest 96:2364–2372.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Shi, Y., Vesely, I. (2005). A Dynamic Straining Bioreactor for Collagen-Based Tissue Engineering. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_9

Download citation

Publish with us

Policies and ethics