Skip to main content

Catalytic Role of Silver and Other Ions on The Mechanism of Chemical and Biological Leaching

  • Chapter
Microbial Processing of Metal Sulfides

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraitis PK, Pattrick RAD, Kelsall GH, Vaughan DJ. 2004. Acid leaching and dissolution of major sulfide ore minerals: processes and galvanic effects in complex systems. Mineralogical Magazine 68: 343-51.

    Article  CAS  Google Scholar 

  • Aghamiriam MM, Yen WT. 2005. Mechanisms of galvanic interactions between gold and sulfide minerals in cyanide solution. Miner Eng 18: 393-407.

    Article  CAS  Google Scholar 

  • Ahonen L, Tuovinen OH. 1990a. Silver catalysis of the bacterial leaching of chalcopyrite containing ore material in column reactors. Miner Eng 3: 437-445.

    Article  CAS  Google Scholar 

  • Ahonen L, Tuovinen OH. 1990b. Catalytic effects of silver in the microbiological leaching of finely ground chalcopyrite-containing ore materials in shake flasks. Hydrometallurgy 24: 219-236.

    Article  CAS  Google Scholar 

  • Ahonen L, Tuovinen OH. 1995. Bacterial leaching of complex sulfide ore sample in bench-scale column reactors. Hydrometallurgy 37: 1-21.

    Article  CAS  Google Scholar 

  • Ballester A. 1987. A study of the mechanism of silver-catalyzed bioleaching of chalcopyrite. In: Davies GA, ed. Separation processes in hydrometallurgy. Ellis Horwood Publishers, Chichester, UK, 99-110.

    Google Scholar 

  • Ballester A, González F, Blázquez ML, Mier JL 1990. The influence of several ions in the bioleaching of metal sulfides. Hydrometallurgy 23: 221-235.

    Article  CAS  Google Scholar 

  • Ballester A, González F, Blázquez ML, Gòmez C, Mier JL. 1992. The use of catalytic ions in bioleaching. Hydrometallurgy 29: 145-160.

    Article  CAS  Google Scholar 

  • Banerjee PC, Chakrabarti BK, Bhattacharyya S, Das A. 1990. Silver-catalyzed hydrometallurgical extraction of copper from sulfide ores from Indian mines. Hydrometallurgy 25: 349-355.

    Article  CAS  Google Scholar 

  • Barriga F, Palencia I, Carranza F. 1987. The passivation of chacopyrite subjected to ferric sulfate leaching and its reactivation with metal sulfides. Hydrometallurgy 19: 159-167.

    Article  Google Scholar 

  • Berry V, Murr L. 1978. Direct observations of bacteria and quantitative studies of their catalytic role in the leaching of low-grade copper-bearing waste. In: Murr L, Torma A, Brierley J, eds. Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic Press, New York.

    Google Scholar 

  • Berry V, Murr L, Hiskey JB. 1978. Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade ores. Hydrometallurgy 3: 309-326.

    Article  CAS  Google Scholar 

  • Björling G. 1954. Lixiviation of sulphidic minerals under oxygen pressure. Metall 8: 781-784.

    Google Scholar 

  • Blancarte-Zurita MA, Branion RMR, Lawrence RW. 1988. Microbiological leaching of chacopyrite concentrates by Thiobacillus ferrooxidans. A comparative study of a conventional process and a catalyzed process. In: Norris PR, Kelly DP, eds. Biohydrometallurgy, Proceedings of the International Symposium, Warwick, Antony Rowe Ltd. Chippenham, Wiltshire, UK, 273-285.

    Google Scholar 

  • Blázquez ML, Álvarez A, Ballester A, González F, Muñoz JA. 1999. Bioleaching behavior of chalcopyrite in the presence of silver at 35o and 68oC. In: Amils R, Ballester A, eds. Biohydrometallurgy and the environment toward the mining of the 21st century, Proceedings of the International Biohydrome- tallurgy Symposium IBS-99, El Escorial, Spain. Elsevier, Amsterdam, Part A, 137-147.

    Chapter  Google Scholar 

  • Bolorunduro SA, Dreisinger DB, Van Weert G. 2003. Fundamental study of silver deportment during the pressure oxidation of sulfide ores and concentrates. Miner Eng 16: 695-708.

    Article  CAS  Google Scholar 

  • Bruynesteyn A, Lawrence RW, Vizsolyi AI, Hackl RP. 1983. An elemental sulfur biohydrometallurgical process for treating sulfide concentrates. In: Proc. Conf. Progress in Biohydrometallurgy, Cagliari, Italy, 151-168.

    Google Scholar 

  • Bruynesteyn A, Halck RP, Lawrence RW, Vizsolyi AI 1986. Biological-acid leach process. US Patent # 4, 571, 387.

    Google Scholar 

  • Canfell AJ, Greenfield PF, Winbome DA. 1997. Silver catalyzed bioleaching of chalcopyrite ore in columns. In: Proceedings of the International Biohydrometalurgy Symposium and Biomine’ 97; August 4–6; Australian Mineral Foundation Inc., Sydney. Glenside, Australia, M5.1.1-M5.1.10.

    Google Scholar 

  • Carranza F, Palencia I, Romero R. 1997. Silver catalyzed IBES process: application to a Spanish copper-zinc sulfide concentrate. Hydrometallurgy 44: 29-42.

    Article  CAS  Google Scholar 

  • Carranza F, Iglesias N, Mazuelos A, Palencia I, Romero R. 2004. Treatment of copper concentrates containing chalcoyrite and non-ferrous sulfides the BRISA process. Hydrometallurgy 71: 413-420.

    Article  CAS  Google Scholar 

  • Chander S. 2003. A brief review of pulp potentials in sulfide flotation. Int J Miner Process 72: 141-150.

    Article  ADS  CAS  Google Scholar 

  • Coto O, Blázquez ML, Ballester A, González F. 1996. Semicontinuous bioleaching of a copper-indium concentrate. An Quim Int Ed 92: 31-36.

    CAS  Google Scholar 

  • Cruz R, Luna-Sànchez RM, Lapidus GT, González I, Monroy M. 2005. An experimental stratrgy to determine galvanic interactions affecting the reactivity of sulfide mineral concentrates. Hydrometallurgy 78: 198-208.

    Article  CAS  Google Scholar 

  • Crundwell FK. 2003. How do bacteria interact with minerals? Hydrometallurgy 71: 75-81.

    Article  CAS  Google Scholar 

  • De GC, Oliver DJ, Pesic BM. 1996. Effect of silver on the ferrous iron oxidizing ability of Thiobacillus ferrooxidans. Hydrometallurgy 41; 211-229.

    Article  Google Scholar 

  • Dutrizac JE. 1989. Elemental sulfur formation during the ferric sulfate leaching of chacopyrite. Can Metall Quart 28: 337-344.

    CAS  Google Scholar 

  • Dutrizac JE. 1994. The leaching of silver sulfide in ferric ion media. Hydrometallurgy 35: 275-292.

    Article  CAS  Google Scholar 

  • Dutrizac JE, Jambor JL. 1987. Behavior of silver during jarosite precipitation. Trans Inst Min Metall 96: C206-C218.

    CAS  Google Scholar 

  • Dutrizac JE, MacDonald RJC. 1973. The effect of some impurities on the rate of chacopyrite dissolution. Can Metall Quart 12: 409-420.

    CAS  Google Scholar 

  • Ekmekçi Z, Demirel H. 1997. Effects of galvanic interactions on collectorless flotation behavior of chalcopyrite and pyrite. Int J Miner Process 52: 31-48.

    Article  Google Scholar 

  • Fowler TA, Holmes PR, Crundwell FK. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl Environ Microbiol 65: 2987-2993.

    PubMed  CAS  Google Scholar 

  • Frenay J. 1984. Leaching of sphalerite: Influence of its iron content. In: International Congress on Applied Mineralogy in the Mineral Industry, Los Angeles, USA.

    Google Scholar 

  • Gòmez C, Figueroa M, Muñoz JA, Ballester A, Blázquez ML. 1997a. A study of bioleached chalcopyrite surfaces in the presence of Ag (I) by voltammetric methods. Miner Eng 10: 111-116.

    Article  Google Scholar 

  • Gòmez C, Blázquez ML, Ballester A. 1997b. Influence of various factors in the bioleaching of a bulk concentrate with mesophilic microorganisms in the presence of Ag(I). Hydrometallurgy 35: 271-287.

    Article  Google Scholar 

  • Gòmez C, Romàn E, Blázquez ML, Ballester A. 1997c. SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions. Miner Eng 10: 825-835.

    Article  Google Scholar 

  • Gòmez E, Ballester A, Blázquez ML, González F. 1999. Silver-catalyzed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms. Hydrometallurgy 51:37-46.

    Article  Google Scholar 

  • Grogan DW. 1989. Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171: 6710-6719.

    PubMed  CAS  Google Scholar 

  • Güler T, Hiçyilmaz C, Gökagaç G, Ekmekçi Z. 2005. Electrochemical behavior of chalcopyrite in the absence and presence of dithiophosphate. Int J Miner Process 75: 217-228.

    Article  CAS  Google Scholar 

  • Gupta CK, Mukherjee TK. 1990. Hydrometallurgy in extraction processes. CRC Press, Boca Raton, USA.

    Google Scholar 

  • Habashi F. 1978. Chalcopyrite: Its chemistry and metallurgy. McGraw-Hill, New York.

    Google Scholar 

  • Habashi F. 1983. Dissolution of minerals and hydrometallurgical processes. Naturwissenschaften 70: 403-411.

    Article  CAS  Google Scholar 

  • Hansford GS, Vargas T. 2001. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy 59: 135-145.

    Article  CAS  Google Scholar 

  • Hiroyoshi N, Arai M, Miki H, Tsunekawa M, Hirajima T. 2002. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 63: 257-267.

    Article  CAS  Google Scholar 

  • Hoffmann LE, Hendrix JL. 1976. Inhibition of Thiobacillus ferrooxidans by soluble silver. Biotechnol Bioeng 18: 1161-1165.

    Article  Google Scholar 

  • Jones DL, Peters E. 1976. The leaching of chalcopyrite with ferric sulfate and ferric chloride. In: Yannopoulos JC, Agarwal JC, eds. Extractive metallurgy of copper, Vol. II, Chapter 34, The Metallurgical Society of AIME, New York, 633-653.

    Google Scholar 

  • Lawrence RW, Vizsolyi A, Vos RJ, Rule C, Chua G. 1984. The biology and chemistry involved in a silver-catalyzed bioleaching process. BC Research Council, Report 1-42-487, Vancouver, Canada.

    Google Scholar 

  • Lawrence RW, Vizsolyi A, Vos RJ. 1993. The silver catalyzed bioleach process for copper concentrate. In: Hiskey JB,Warren GW, eds. Hydrometallurgy: fundamentals, technology and innovations. AIME, Littletown, Colorado, 65-82.

    Google Scholar 

  • Linge HG. 1977. Reactivity comparison of Australian chalcopyrite concentrates in acidified ferric solution. Hydrometallurgy 2: 219-233.

    Article  CAS  Google Scholar 

  • Majima H. 1969. How oxidation affects selective flotation of complex sulfide. Can Metal Quar 8: 269-273.

    ADS  CAS  Google Scholar 

  • McElroy RO, Duncan DW. 1974. Copper extraction by rapid bacteriological process. US Patent # 3, 856, 913.

    Google Scholar 

  • Mier JL, Ballester A, Gònzàlez F, Blázquez ML, Gòmez E. 1996. The influence of metallic ions on the activity of Sulfolobus BC. J Chem Tech Biotechnol 65: 272-280.

    Article  CAS  Google Scholar 

  • Miller JD, Portillo HQ. 1979. Silver catalysis in ferric sulfate leaching of chalcopyrite. In: Laskowski J, ed. XIII International Min Proc Conf. Elsevier, Amsterdam, 851-901.

    Google Scholar 

  • Miller JD, McDonough PJ, Portillo HQ. 1981. Electrochemistry in silver catalyzed ferric sulfate leaching of chalcopyrite. In: Kuhn MC, ed. Process and fundamental considerations of selected hydrometallurgical systems. SME-AIME, New York, 327-338.

    Google Scholar 

  • Mulak W. 1987. The catalytic action of cupric and ferric ions in nitric acid leaching of Ni(III)S(II). Hydrometallurgy 17: 201-214.

    Article  CAS  Google Scholar 

  • Muñoz JA, Gomez C, Ballester A, Blázquez ML, González F. 1998. Electrochemical behavior of chalcopyrite in the presence of silver and Sulfolobusbacteria. J Appl Electrochem 28: 49-56.

    Article  Google Scholar 

  • Muñoz JA, Young S, Dreisinger DB. 2000. Silver-catalyzed bioleaching process for copper extraction from chalcopyrite heap. US Patent # WO0037690.

    Google Scholar 

  • Nakazawa H, Hashizume T, Sato H. 1993. Effect of silver ions on bacterial leaching of flotation concentrate of copper-nickel sulfide ores. Metallurgical Review 10: 87-97.

    CAS  Google Scholar 

  • Natarajan K, Ywasaki I. 1986. Microbe-Mineral Interactions in the Leaching of Complex Sulfides. In: Clum J, Haas L, eds. Microbiological Effects on Metallurgical Processes, TMS, Warrendale, USA.

    Google Scholar 

  • Nicol MJ, Làzaro I. 2002. The role of Eh measurements in the interpretation of the kinetics and mechanisms of the oxidation and leaching of sulfide minerals. Hydrometallurgy 63: 15-22.

    Article  CAS  Google Scholar 

  • Norris PR. 1989. Mineral-oxidizing bacteria: metal-organism interactions. In: Poole RK, Gadd GM, eds. Metal-Microbe interactions. Oxford University Press, Oxford, 99-117.

    Google Scholar 

  • Norris PR, Barr DW. 1985. Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 28: 221-224.

    Article  CAS  Google Scholar 

  • Norris PR, Kelly DP. 1978. Toxic metals in leaching sistems. In: Murr L, Torma A, Brierley J, eds. Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, New York, 83-102.

    Google Scholar 

  • Palencia I, Romero R, Carranza F. 1998. Silver catalyzed IBES process: application to a Spanish copper-zinc sulfide concentrate. Part 2. Biooxidation of the ferrous iron and catalyst recovery. Hydrometallurgy 48: 101-112.

    Article  CAS  Google Scholar 

  • Palencia I, Romero R, Mazuelos A, Carranza F. 2002. Treatment of secondary copper sulfides (Chalcocite and Covellite) by the BRISA process. Hydrometallurgy 66: 85-93.

    Article  CAS  Google Scholar 

  • Parker A, Klauber C, Kougianos A, Watling HR, van Bronswijk W. 2003. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometallurgy 71: 265-276.

    Article  CAS  Google Scholar 

  • Pawlek F. 1974. Verfharen zur hudrometallurgischen gewinnung von kupfer aus kupferkiesbzw buntkupferkieskonzentraten. Austrian Patent # 319,616.

    Google Scholar 

  • Peng Y, Grano S, Fornasiero D, Ralston J. 2003. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int J Miner Process 69: 87-100.

    Article  CAS  Google Scholar 

  • Peters E. 1977. The Electrochemistry of Sulfide Minerals. In: Bockis J, Rand D, Welch B, eds. Trends in Electrochemistry. Plenum Press, New York.

    Google Scholar 

  • Peters E. 1986. Leaching of sulfides. In: Somansudaran P, ed. Advances in Mineral Processing. SME/AIME, New York, 445-462.

    Google Scholar 

  • Pooley FD, Sherstha GN. 1996. The distribution and influence of silver in pyrite bacterial leaching systems. Miner Eng 9: 825-836.

    Article  CAS  Google Scholar 

  • Price DW, Warren GW. 1986. The influence of silver ion on the electrochemical response of chacopyrite and other mineral sulfide electrodes in sulfuric acid. Hydrometallurgy 15: 303-324.

    Article  CAS  Google Scholar 

  • Razell WE, Trusell PC. 1963. Microbiological leaching of metallic sulfides. Appl Microbiol 11: 105-110.

    Google Scholar 

  • Rohwerder T, Gherke T, Kinzler K, Sand W. 2003. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotech 63: 239-248.

    Article  CAS  Google Scholar 

  • Romero R, Palencia I, Carranza F. 1998. Silver catalyzed IBES process: application to a Spanish copper-zinc sulfide concentrate. Part 3. Selection of the operational parameters for a continuous pilot plant. Hydrometallurgy 49: 75-86.

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Hallmann R, Schippers A. 1995. Sulfur chemistry, biofilm and the (in)direct attack mechanism: a critical evaluation of bacterial leaching. Appl Microbiol Biotech 43: 961-966.

    Article  CAS  Google Scholar 

  • Sato H, Nakazawa H, Kudo Y. 2000. Effect of silver chloride on the bioleaching of chalcopyrite concentrate. Int J Miner Process 59: 17-24.

    Article  CAS  Google Scholar 

  • Scott TR, Dyson NF. 1968. The catalyzed oxidation of zinc sulfide under acid pressure leaching conditions. Transactions of the Metallurgical Society of AIME 242: 1815-1821.

    Google Scholar 

  • Sherrit Gordon Mines. 1963. Ltd. Australian Patent 274,816.

    Google Scholar 

  • Silva G, Lastra MR, Budden JR. 2003. Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena. Miner Eng 16: 199-203.

    Article  CAS  Google Scholar 

  • Snell GJ. 1975. Sulfate leaching of copper ores using silver catalyst. US Patent # 3,886,257.

    Google Scholar 

  • Snell GJ, Sze MC. 1977. New oxidative leaching process uses silver to enhance copper recovery. Eng Mining J. 178: 100-105.

    Google Scholar 

  • Sukla LB, Chaudhury GR, Das RP. 1990. Effect of silver ion on kinetics of biochemical leaching of chalcopyrite concentrate. Trans Inst Min Metall 99: C43-C46.

    Google Scholar 

  • Vaughan DJ. 1984. Electronic Structures of Sulfides and Leaching Behavior. In: Bautista RG, ed. Hydrometallurgical Process Fundamental. Plenum Press, New York.

    Google Scholar 

  • Wadsworth M. 1976. Physical chemistry of hydrometallurgy. Electrochemical Processes in Leaching. In: Physical Chemistry in Metallurgye. US Steel Research Lab., Monroeville.

    Google Scholar 

  • Wan RY, Miller JD, Simkovich G. 1984. Enhanced ferric sulfate leaching of copper fron CFeS/C particulate aggregates. In: International Conference on recent advances I Mineral Science and technology. Council for Mineral Technology, Johannesburg, South Africa.

    Google Scholar 

  • Wang M, Zhang Y, Deng T, Wang K. 2004. Kinetic modeling for the bacterial leaching of chalcopyrite catalyzed by silver ions. Hydrometallurgy 17: 943-947.

    CAS  Google Scholar 

  • Warren GW, Drouven B, Price DW. 1984. Relationships between the Pourbaix diagram for Ag-S-H2O and electrochemical oxidation and reduction of Ag2S. Metallurgical Transactions B 15B: 235-242.

    Article  CAS  Google Scholar 

  • Woods R. 2003. Electrochemical potential controlling flotation. Int J Miner Process 72: 151-162.

    Article  CAS  Google Scholar 

  • Yuehua H, Guanzhou Q, Jun W, Dianzuo W. 2002. The effect of silver-bearing catalysts on bioleaching of chalcopyrite. Hydrometallurgy 64: 81-88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ballester, A., Blázquez, M.L., González, F., Muñoz, J.A. (2007). Catalytic Role of Silver and Other Ions on The Mechanism of Chemical and Biological Leaching. In: Donati, E.R., Sand, W. (eds) Microbial Processing of Metal Sulfides. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5589-7_4

Download citation

Publish with us

Policies and ethics