Skip to main content

Maintaining Longest Paths in Cyclic Graphs

  • Conference paper
Principles and Practice of Constraint Programming - CP 2005 (CP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3709))

  • 1619 Accesses

Abstract

This paper reconsiders the problem of maintaining longest paths in directed graphs, which is at the core of many scheduling applications. It presents bounded incremental algorithms for arc insertion and deletion running in time O(||δ|| + |δ|log|δ|) on Cyclic<0 graphs (i.e., graphs whose cycles have strictly negative lengths), where |δ| and ||δ|| are measures of the change in the input and output. For Cyclic≤0 graphs, maintaining longest paths is unbounded under reasonable computational models; when only arc insertions are allowed, it is shown that the problem can be solved in O(||δ|| + |δ|log|δ|) time even in the presence of zero-length cycles. The algorithms directly apply to shortest paths (by negating the lengths), leading to simpler algorithms than previously known and reducing the worst-case complexity of an operation from Õ(n m) to O(n + m) for Cyclic>0 graphs with n vertices and m arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpern, B., Hoover, R., Rosen, B., Sweeney, P., Zadeck, K.: Incremental Evaluation of Computational Circuits. In: SODA 1990 (1990)

    Google Scholar 

  2. Cesta, A., Oddi, A., Smith, S.: Iterative Flattening: A Scalable Method for Solving Multi-Capacity Scheduling Problems. In: AAAI 2000 (July 2000)

    Google Scholar 

  3. Dechter, R., Meiri, J., Pearl, I.: Temporal Constraint networks. Artificial Intelligence 49, 61–95 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dell’Amico, M., Trubian, M.: Applying Tabu Search to the Job-Shop Scheduling Problem. Annals of Operations Research 41, 231–252 (1993)

    Article  MATH  Google Scholar 

  5. Edmonds, J., Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. JACM 34, 596–615 (1972)

    Google Scholar 

  6. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach. 34, 596–615 (1987)

    MathSciNet  Google Scholar 

  7. Katriel, I.: Dynamic Heaviest Paths in DAGs with Arbitrary Edge Weights. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Katriel, I., Michel, L., Van Hentenryck, P.: Maintaining Longest Paths Incrementally. Constraints 10(2) (2005)

    Google Scholar 

  9. Laborie, P.: Algorithms for Propagating Resource Constraints in AI Planning and Scheduling: Existing Approaches and New Results. Artificial Intelligence 143(2), 151–188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Michel, L., Van Hentenryck, P.: Maintaining Longest Path Incrementally. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 540–554. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Michel, L., Van Hentenryck, P.: Iterative Relaxations for Iterative Flattening in Cumulative Scheduling. In: ICAPS 2004, Whistler, British Columbia (2004)

    Google Scholar 

  12. Nowicki, E., Smutnicki, C.: A Fast Taboo Search Algorithm for the Job Shop Problem. Management Science 42(6), 797–813 (1996)

    Article  MATH  Google Scholar 

  13. Ramalingam, G.: Bounded Incremental Computation. PhD thesis, University of Wisconsin-Madison (1993)

    Google Scholar 

  14. Ramalingam, G., Reps, T.: On the Computational Complexity of Dynamic Graph Problems. Theoretical Computer Science 158, 233–277 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tarjan, R.E.: Amortized Computational Complexity. SIAM Journal of Algebraic Discrete Methods 6, 306–318 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Werner, F., Winkler, A.: Insertion Techniques for the Heuristic Solution of the Job Shop Problem. Technical report, T.U. Otto von Guericke, Magdebourg (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katriel, I., Van Hentenryck, P. (2005). Maintaining Longest Paths in Cyclic Graphs. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_28

Download citation

  • DOI: https://doi.org/10.1007/11564751_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29238-8

  • Online ISBN: 978-3-540-32050-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics