Skip to main content

Time Evolution of the Terrestrial Reference Frame

  • Conference paper
A Window on the Future of Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 128))

Abstract

This paper investigates the time evolution of the terrestrial reference frame (TRF). We analysed time series of site positions and datum parameters obtained from VLBI, SLR, GPS and DORIS solutions with respect to non-linear motions (e.g. jumps, seasonal signals) and systematic differences. The time series of the translation and scale parameters were used to identify solution- and technique-related problems, and to investigate the contribution of the different techniques to realise the TRF origin and scale. The position time series reveal non-linear motions and jumps for many sites, which have to be considered for future TRF realisations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamimi, Z., P. Sillard, C. Boucher (2002). ITRF2000: A New Release of the International Terrestrial Reference Frame for Earth Science Applications. J. Geophysical Res., 107(B10), 2214, doi:10.1029/2001JB000561.

    Article  Google Scholar 

  • Angermann, D., M. Gerstl, R. Kelm, H. Müller, W. Seemüller, M. Vei (2002a). Time Evolution of SLR Reference Frame. Adv. in Space Res., Vol. 30/2, pp. 201–206, Elsevier.

    Article  Google Scholar 

  • Angermann, D., H. Mülller, M. Gerstl (2002b). Geocenter variations derived from SLR data to LAGEOS 1 and 2. In: Vistas for Geodesy in the New Millennium, IAG Symposia, J. Adam and K.-P. Schwarz (eds), Vol. 125, pp. 30–35.

    Google Scholar 

  • Blewitt, G. D., Lavallee, P. Clarke, K. Nurutdinov (2001). A new global mode of Earth deformation: Seasonal cycle detected. Science, 294(5550), pp. 2342–2345.

    Article  Google Scholar 

  • Blewitt (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., Vol. 108, No. B2, 2103, doi: 10.1029/2002JB002082.

    Article  Google Scholar 

  • Dong, D., T. Yunck, M. Heflin (2003). Origin of the International Terrestrial Reference Frame. J. Geophys. Res., Vol. 108, No. B4, 2200, doi: 10.1029/2002JB002035.

    Article  Google Scholar 

  • Ferland, R. (2002). Activities of the International GPS Service IGS Reference Frame Working Group. In: Vistas for Geodesy in the New Millennium, IAG Symposia, J. Adam and K.-P. Schwarz (eds), Vol. 125, pp. 3–8, Springer.

    Google Scholar 

  • Herring, T. (2002). Personal Communication.

    Google Scholar 

  • Kaniuth, K., and S. Huber (2003). An assessment of radome effects on height estimates in the EUREF network. Mitt. Bundesamt für Kartographie und Geodäsie, 29, pp. 97–102.

    Google Scholar 

  • Kaniuth, K., H. Müller, W. Seemüller (2002). Displacement of the space geodetic observatory Arequipa due to recent earthquakes. Zeitschrift für Vermessungswesen, Heft 4, pp. 238–243, Witwer.

    Google Scholar 

  • Klotz, J., D. Angermann, G.W. Michel, R. Porth, C. Reigber, J. Reinking, J. Viramonte, R. Perdomo, V.H. Rios, S. Barientos, R. Barriga, O. Cifuentes (1999). GPS-derived deformation of the Central Andes including the 1995 Antofagasta Mw=8.0 Earthquake. Pure and Appl. Geophysics, 154, pp. 709–730.

    Article  Google Scholar 

  • Klotz, J., G. Khazaradze, D. Angermann, C. Reigber, R. Perdomo, O. Cifuentes (2001). Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth and Planetary Science Letters, 193, pp. 437–446, Elsevier.

    Article  Google Scholar 

  • Ma, C., M. Feissel (1997). Definition and Realisation of the International Celestial Reference System by Astrometry of Extragalactic Objects. IERS Technical Note 23, Paris.

    Google Scholar 

  • Rothacher, M. (2002). Estimation of station heights with GPS. In: Vertical Reference Systems, IAG Symposia, H. Drewes, A. Dodson, L. Fortes, L. Sanchez, P. Sandoval (eds), Vol. 124, pp. 81–90, Springer.

    Google Scholar 

  • Tesmer, V. (2002). VLBI Solution DGFI01RO1 based on least-squares estimation using OCCAM5.0 and DOGS-CS. In: IVS 2002 General Meeting Proceedings, N. Vandenberg and N.K. Baver (eds), NASA/CP-2002-210002.

    Google Scholar 

  • Titov, O., V. Tesmer, J. Böhm (2001). OCCAM5.0 Users Guide, AUSLIG Technical Report 7, Canberra.

    Google Scholar 

  • Willis, P. (2003). Personal Communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angermann, D., Meisel, B., Krügel, M., Müller, H., Tesmer, V. (2005). Time Evolution of the Terrestrial Reference Frame. In: Sansò, F. (eds) A Window on the Future of Geodesy. International Association of Geodesy Symposia, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27432-4_2

Download citation

Publish with us

Policies and ethics