Skip to main content

Virus Versus Mankind

  • Conference paper
  • First Online:
Computers and Games (CG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2063))

Included in the following conference series:

Abstract

We define a two-player virus game played on a finite cyclic digraph G=(V,E). Each vertex is either occupied by a single virus, or is unoccupied.A move consists of transplanting a virus from some u into a selected neighborhood N(u) of u, while devouring every virus in N(u), and replicating in N(u), i.e., placing a virus on all vertices of N(u) where there wasn’t any virus. The player first killing all the virus wins, and the opponent loses. If there is no last move, the outcome is a draw. Giving a minimum of the underlying theory, we exhibit the nature of the games on hand of examples. The 3-fold motivation for exploring these games stems from complexity considerations in combinatorial game theory, extending the hitherto 0-player and solitaire cellular automata games to two-player games, and the theory of linear error correcting codes.

Humanity is but a passing episode in the eternal life of the virus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. R. Berlekamp, J. H. Conway and R. K. Guy. Winning Ways for your mathematical plays. (Two volumes), Academic Press, London, 1982.

    MATH  Google Scholar 

  2. N. L. Biggs. Chip-firing and the critical group of a graph. J. Algebr. Comb. 9,25–45, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Björner and L. Lovász. Chip-firing on directed graphs. J. Algebr. Comb. 1,305–328, 1992.

    Article  MATH  Google Scholar 

  4. J. H. Conway. On Numbers and Games. Academic Press, London, 1976.

    MATH  Google Scholar 

  5. J. H. Conway. Integral lexicographic codes. Discrete Math. 83, 219–235, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. H. Conway and N. J. A. Sloane. Lexicographic codes: error-correcting codes from game theory. IEEE Trans. Inform. Theory IT-32, 337–348, 1986.

    Article  MathSciNet  Google Scholar 

  7. T. S. Ferguson. Misère annihilation games. J. Combin. Theory (Ser. A) 37, 205–230, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. S. Fraenkel. Combinatorial games with an annihilation rule. In The Influence of Computing on Mathematical Research and Education, Proc. Symp. Appl. Math. (J. P. LaSalle, ed.),Vol. 20, Amer. Math. Soc., Providence, RI, pp. 87–91, 1974.

    Google Scholar 

  9. A. S. Fraenkel. Error-correcting codes derived from combinatorial games. In Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ. (R. J. Nowakowski, ed.),Vol. 29, Cambridge University Press, Cambridge, pp. 417–431, 1996.

    Google Scholar 

  10. A. S. Fraenkel. Scenic trails ascending from sea-level Nim to alpine chess. In Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ. (R. J. Nowakowski, ed.), Vol. 29, Cambridge University Press, Cambridge, pp. 13–42, 1996.

    Google Scholar 

  11. A. S. Fraenkel. Two-player games on cellular automata. To appear in: More Games of No Chance, Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ. (R. J. Nowakowski, ed.), Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  12. A. S. Fraenkel and E. Goldschmidt. Pspace-hardness of some combinatorial games. J. Combin. Theory (Ser. A) 46, 21–38, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. S. Fraenkel and Y. Yesha. Theory of annihilation games. Bull. Amer. Math. Soc. 82, 775–777, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. S. Fraenkel and Y. Yesha. Complexity of problems in games, graphs and algebraic equations. Discrete Appl. Math. 1, 15–30, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. S. Fraenkel and Y. Yesha. Theory of annihilation games — I. J. Combin. Theory (Ser. B) 33, 60–86, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. S. Fraenkel and Y. Yesha. The generalized Sprague-Grundy function and its invariance under certain mappings. J. Combin. Theory (Ser. A) 43, 165–177, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. S. Goldstein and E. M. Reingold. The complexity of pursuit on a graph. Theoret. Comput. Sci. (Math Games) 143, 93–112, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Goles. Sand piles, combinatorial games and cellular automata. Math. Appl. 64, 101–121, 1991.

    MathSciNet  Google Scholar 

  19. C. M. López. Chip firing and the Tutte polynomial. Ann. of Comb. 1, 253–259, 1997.

    Article  MATH  Google Scholar 

  20. D. H. Pelletier. Merlin’s magic square. Amer. Math. Monthly 94, 143–150, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Pless. Games and codes. In Combinatorial Games, Proc. Symp. Appl. Math. (R. K. Guy, ed.), Vol. 43, Amer. Math. Soc., Providence, RI, pp. 101–110, 1991.

    Google Scholar 

  22. C. A. B. Smith. Graphs and composite games. J. Combin. Theory 1, 51–81, 1966. Reprinted in slightly modified form in: A Seminar on Graph Theory (F. Harary, ed.), Holt, Rinehart and Winston, NewYork, NY, 1967.

    Article  MATH  Google Scholar 

  23. D. L. Stock. Merlin’s magic square revisited. Amer. Math. Monthly 96, 608–610, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Sutner. On σ-automata. Complex Systems 2, 1–28, 1988.

    MATH  MathSciNet  Google Scholar 

  25. K. Sutner. Linear cellular automata and the Garden-of-Eden. Math. Intelligencer 11, 49–53, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Sutner. The σ-game and cellular automata. Amer. Math. Monthly 97, 24–34, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  27. K. Sutner. On the computational complexity of finite cellular automata. J. Comput. System Sci. 50, 87–97, 1995.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraenkel, A.S. (2001). Virus Versus Mankind. In: Marsland, T., Frank, I. (eds) Computers and Games. CG 2000. Lecture Notes in Computer Science, vol 2063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45579-5_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45579-5_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43080-3

  • Online ISBN: 978-3-540-45579-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics