Skip to main content

The Periodic Table’s Impact on Bioinorganic Chemistry and Biology’s Selective Use of Metal Ions

  • Chapter
  • First Online:
The Periodic Table II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 182))

Abstract

Despite the availability of a vast variety of metal ions in the periodic table, biology uses only a selective few metal ions. Most of the redox-active metals used belong to the first row of transition metals in the periodic table and include Fe, Co, Ni, Mn, and Cu. On the other hand, Ca, Zn, and Mg are the most commonly used redox inactive metals in biology. In this chapter, we discuss periodic table’s impact on bioinorganic chemistry, by exploring reasons behind this selective choice of metals in biology. A special focus is placed on the chemical and functional reasons why one metal ion is preferred over another one. We discuss the implications of metal choice in various biological processes including catalysis, electron transfer, redox sensing, and signaling. We find that bioavailability of metal ions along with their redox potentials, coordination flexibility, valency, and ligand affinity determines the specificity of metals for biological processes. Understanding the implications underlying the selective choice of metals from the periodic table in these biological processes can help design more efficient catalysts, more precise biosensors, and more effective drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaM:

Calmodulin

E°′:

Reduction potential

ET:

Electron transfer

HCO:

Heme-copper oxidase

Ln:

Lanthanide

NO:

Nitric oxide

NOR:

Nitric oxide reductase

SCS:

Secondary coordination sphere

SOD:

Superoxide dismutase

References

  1. Crichton R (2012) Biological inorganic chemistry, 2nd edn. Elsevier, Amsterdam, p 472

    Google Scholar 

  2. Lever ABP, Gray HB (eds) (1983) Physical bioinorganic chemistry series, No. 1: Iron porphyrins, Pt. 1. Addison-Wesley, Massachusetts, p 286

    Google Scholar 

  3. Barber J (2012). Cold Spring Harb Symp Quant Biol 77:295–307

    CAS  PubMed  Google Scholar 

  4. Sousa FL, Alves RJ, Ribeiro MA, Pereira-Leal JB, Teixeira MPereira MM (2012). Biochim Biophys Acta Bioenerg 1817(4):629–637

    CAS  Google Scholar 

  5. Kepp KP (2017). Coord Chem Rev 344:363–374

    CAS  Google Scholar 

  6. Kato S, Matsui T, Gatsogiannis C, Tanaka YJBR (2018). Biophys Rev 10(2):191–202

    CAS  PubMed  Google Scholar 

  7. Fairbridge RW (1972) The encyclopedia of geochemistry and environmental sciences. Encyclopedia of earth sciences series, vol 4A. Van Nostrand Reinhold, New York, p 1321

    Google Scholar 

  8. Hong Enriquez RP, Do TN (2012). Life 2(4):274–285

    PubMed  PubMed Central  Google Scholar 

  9. Anderson DL (1983). Proc 14th Lunar Planet Sci Conf 88:41–52

    CAS  Google Scholar 

  10. Egorova KS, Ananikov VP (2017). Organometallics 36(21):4071–4090

    CAS  Google Scholar 

  11. Spencer DW, Peter GB (1969). Geochim Cosmochim Acta 33(3):325–339

    CAS  Google Scholar 

  12. Karlin KD (1993). Science 261(5122):701–708

    CAS  PubMed  Google Scholar 

  13. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW (2015). Biochim Biophys Acta, Mol Cell Res 1853(6):1350–1369

    CAS  PubMed  Google Scholar 

  14. Yoshikawa S, Muramoto K, Shinzawa-Itoh K (2011). Annu Rev Biophys 40(1):205–223

    CAS  PubMed  Google Scholar 

  15. Shiro Y (2012). Biochim Biophys Acta Bioenerg 1817(10):1907–1913

    CAS  Google Scholar 

  16. Wittkamp F, Senger M, Stripp ST, Apfel UP (2018). Chem Commun 54(47):5934–5942

    CAS  Google Scholar 

  17. Lee CC, Fay AW, Weng T-C, Krest CM, Hedman B, Hodgson KO, Hu Y, Ribbe MW (2015). Proc Natl Acad Sci U S A 112(45):13845–13849

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller A-F (2008). Acc Chem Res 41(4):501–510

    CAS  PubMed  Google Scholar 

  19. Bhagi-Damodaran A, Kahle M, Shi Y, Zhang Y, Ädelroth P, Lu Y (2017). Angew Chem Int Ed 56(23):6622–6626

    CAS  Google Scholar 

  20. Bhagi-Damodaran A, Petrik I, Lu Y (2016). Isr J Chem 56(9–10):773–790

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhagi-Damodaran A, Petrik ID, Marshall NM, Robinson H, Lu Y (2014). J Am Chem Soc 136(34):11882–11885

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhagi-Damodaran A, Reed JH, Zhu Q, Shi Y, Hosseinzadeh P, Sandoval BA, Harnden KA, Wang S, Sponholtz MR, Mirts EN, Dwaraknath S, Zhang Y, Moënne-Loccoz P, Lu Y (2018). Proc Natl Acad Sci U S A 115(24):6195–6200

    PubMed  PubMed Central  Google Scholar 

  23. Mukherjee S, Mukherjee A, Bhagi-Damodaran A, Mukherjee M, Lu Y, Dey A (2015). Nat Commun 6:8467

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mukherjee S, Mukherjee M, Mukherjee A, Bhagi-Damodaran A, Lu Y, Dey A (2018). ACS Catal 8(9):8915–8924

    CAS  Google Scholar 

  25. Bhagi-Damodaran A, Michael MA, Zhu Q, Reed J, Sandoval BA, Mirts EN, Chakraborty S, Moënne-Loccoz P, Zhang Y, Lu Y (2016). Nat Chem 9:257–260

    PubMed  PubMed Central  Google Scholar 

  26. Reed JH, Shi Y, Zhu Q, Chakraborty S, Mirts EN, Petrik ID, Bhagi-Damodaran A, Ross M, Moënne-Loccoz P, Zhang Y, Lu Y (2017). J Am Chem Soc 139(35):12209–12218

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014). Chem Rev 114(8):4081–4148

    CAS  PubMed  Google Scholar 

  28. Schuchmann K, Chowdhury NP, Müller V (2018). Front Microbiol 9:2911

    PubMed  PubMed Central  Google Scholar 

  29. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011). Structure 19(8):1038–1052

    CAS  PubMed  Google Scholar 

  30. Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014). Chem Rev 114(8):4041–4062

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee CC, Hu Y, Ribbe MW (2010). Science 329(5992):642

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu Y, Lee CC, Ribbe MW (2012). Dalton Trans 41(4):1118–1127

    CAS  PubMed  Google Scholar 

  33. Kowalska J, DeBeer S (2015). Biochim Biophys Acta, Mol Cell Res 1853(6):1406–1415

    CAS  PubMed  Google Scholar 

  34. Sippel D, Einsle O (2017). Nat Chem Biol 13(9):956–960

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller A-F, Teixeira M, Valentine JS (2014). Chem Rev 114(7):3854–3918

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dean AJ (1985) Lange’s handbook of chemistry, vol 13. McGraw-Hill, New York

    Google Scholar 

  37. Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014). Chem Rev 114(8):4366–4369

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chakraborty S, Hosseinzadeh P, Lu Y (2014) Metalloprotein design and engineering. Wiley, Chichester

    Google Scholar 

  39. Hosseinzadeh P, Lu Y (2016). Biochim Biophys Acta Bioenerg 1857(5):557–581

    CAS  Google Scholar 

  40. Bott AW (1999). Curr Sep 18(2):47–54

    CAS  Google Scholar 

  41. Brunori M (1994). Biosens Bioelectron 9(9/10):633–636

    CAS  Google Scholar 

  42. Gray HB, Winkler JR (2001) Electron transfer in metalloproteins. Wiley, Weinheim

    Google Scholar 

  43. Hu C, Yu Y, Wang J (2017). Chem Commun 53(30):4173–4186

    CAS  Google Scholar 

  44. Malkin R, Rabinowitz JC (1967). Annu Rev Biochem 36(1):113–148

    CAS  PubMed  Google Scholar 

  45. McLendon G (1995) Electron transfer processes in metalloproteins. In: Handbook of metal-ligand interactions in biological fluids. Bioinorganic chemistry, vol 1. Marcel Dekker, New York, pp 317–323

    Google Scholar 

  46. Noodleman L, Han W-G (2006). J Biol Inorg Chem 11(6):674–694

    CAS  PubMed  Google Scholar 

  47. Solomon EI, Basumallick L, Dey A, Sarangi R (2004). Proc Indian Natl Sci Acad 70(2):267–281

    CAS  Google Scholar 

  48. Solomon EI, Randall DW, Glaser T (2000). Coord Chem Rev 200-202:595–632

    CAS  Google Scholar 

  49. Winkler JR, Gray HB (1992). Chem Rev 92(3):369–379

    CAS  Google Scholar 

  50. Winkler JR, Gray HB (2014). Chem Rev 114(7):3369–3380

    CAS  PubMed  Google Scholar 

  51. Stephens PJ, Jollie DR, Warshel A (1996). Chem Rev 96(7):2491–2514

    CAS  PubMed  Google Scholar 

  52. Job RC, Bruice TC (1975). Proc Natl Acad Sci U S A 72(7):2478–2482

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barras F, Fontecave M (2007). J Biol Chem 282(42):30442–30451

    CAS  PubMed  Google Scholar 

  54. Moura I, Teixeira M, Moura JJG, LeGall J (1991). J Inorg Biochem 44(2):127–139

    CAS  PubMed  Google Scholar 

  55. Thapper A, Rizzi AC, Brondino CD, Wedd AG, Pais RJ, Maiti BK, Moura I, Pauleta SR, JJG M (2013). J Inorg Biochem 127:232–237

    CAS  PubMed  Google Scholar 

  56. Maher M, Cross M, Wilce MCJ, Guss JM, Wedd AG (2004). Acta Cryst D 60(2):298–303

    Google Scholar 

  57. Slater JW, Marguet SC, Monaco HA, Shafaat HS (2018). J Am Chem Soc 140(32):10250–10262

    PubMed  Google Scholar 

  58. Slater JW, Shafaat HS (2015). J Phys Chem Lett 6(18):3731–3736

    CAS  PubMed  Google Scholar 

  59. Bertini I, Cavallaro G, Rosato A (2006). Chem Rev 106(1):90–115

    CAS  PubMed  Google Scholar 

  60. Simonneaux G, Bondon A (2005). Chem Rev 105(6):2627–2646

    CAS  PubMed  Google Scholar 

  61. Reedy CJ, Gibney BR (2004). Chem Rev 104(2):617–650

    CAS  PubMed  Google Scholar 

  62. Findlay MC, Chien JCW (1977). FEBS J 76(1):79–83

    CAS  Google Scholar 

  63. Dickinson LC, Chien JC (1977). J Biol Chem 252(17):6156–6162

    CAS  PubMed  Google Scholar 

  64. Ensign AA, Jo I, Yildirim I, Krauss TD, Bren KL (2008). Proc Natl Acad Sci U S A 105(31):10779–10784

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dickinson LC, Chien JCW (1975). Biochemistry 14(16):3526–3534

    CAS  PubMed  Google Scholar 

  66. Hosseinzadeh P, Tian S, Marshall NM, Hemp J, Mullen T, Nilges MJ, Gao Y-G, Robinson H, Stahl DA, Gennis RB, Lu Y (2016). J Am Chem Soc 138(20):6324–6327

    CAS  PubMed  Google Scholar 

  67. New SY, Marshall NM, Hor TSA, Xue F, Lu Y (2012). Chem Commun 48(35):4217–4219

    CAS  Google Scholar 

  68. Tian S, Liu J, Cowley RE, Hosseinzadeh P, Marshall NM, Yu Y, Robinson H, Nilges MJ, Blackburn NJ, Solomon EI, Lu Y (2016). Nat Chem 8:670–674

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilson TD, Yu Y, Lu Y (2013). Coord Chem Rev 257(1):260–276

    CAS  Google Scholar 

  70. Warren JJ, Lancaster KM, Richards JH, Gray HB (2012). J Inorg Biochem 115:119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hay M, Richards JH, Lu Y (1996). Proc Natl Acad Sci U S A 93(1):461–464

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dennison C, Vijgenboom E, de Vries S, van der Oost J, Canters GW (1995). FEBS J 365(1):92–94

    CAS  Google Scholar 

  73. Marshall NM, Garner DK, Wilson TD, Gao Y-G, Robinson H, Nilges MJ, Lu Y (2009). Nature 462(7269):113–116

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Farver O, Marshall NM, Wherland S, Lu Y, Pecht I (2013). Proc Natl Acad Sci U S A 110(26):10536–10540

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Manesis AC, Shafaat HS (2015). Inorg Chem 54(16):7959–7967

    CAS  PubMed  Google Scholar 

  76. Hosseinzadeh P, Marshall NM, Chacón KN, Yu Y, Nilges MJ, New SY, Tashkov SA, Blackburn NJ, Lu Y (2016). Proc Natl Acad Sci U S A 113(2):262–267

    CAS  PubMed  Google Scholar 

  77. McLaughlin MP, Retegan M, Bill E, Payne TM, Shafaat HS, Peña S, Sudhamsu J, Ensign AA, Crane BR, Neese F, Holland PL (2012). J Am Chem Soc 134(48):19746–19757

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu J, Meier KK, Tian S, Zhang J-l, Guo H, Schulz CE, Robinson H, Nilges MJ, Münck E, Lu Y (2014). J Am Chem Soc 136(35):12337–12344

    CAS  PubMed  Google Scholar 

  79. Manesis AC, O’Connor MJ, Schneider CR, Shafaat HS (2017). J Am Chem Soc 139(30):10328–10338

    CAS  PubMed  Google Scholar 

  80. Ortiz de Orué Lucana D (2012). Antioxid Redox Signal 16(7):636–638

    PubMed  PubMed Central  Google Scholar 

  81. Outten FW, Theil EC (2009). Antioxid Redox Signal 11(5):1029–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Banerjee R, Smith W (2012). J Biol Chem 287(7):4395–4396

    CAS  PubMed  Google Scholar 

  83. Reniere ML (2018). J Bacteriol 200(17):00128–00118

    Google Scholar 

  84. Green J, Paget MS (2004). Nat Rev Microbiol 2(12):954–966

    CAS  PubMed  Google Scholar 

  85. Wang Y, Dufour YS, Carlson HK, Donohue TJ, Marletta MA, Ruby EG (2010). Proc Natl Acad Sci U S A 107(18):8375–8380

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Plate L, Marletta MA (2013). Trends Biochem Sci 38(11):566–575

    CAS  PubMed  Google Scholar 

  87. Weinert EE, Plate L, Whited CA, Olea C, Marletta MA (2010). Angew Chem Int Ed 49(4):720–723

    CAS  Google Scholar 

  88. Erwin N, Patra S, Winter R (2016). Phys Chem Chem Phys 18(43):30020–30028

    CAS  PubMed  Google Scholar 

  89. Olea C, Herzik MA, Kuriyan J, Marletta MA (2010). Protein Sci 19(4):881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Metzen E, Ratcliffe PJ (2004). J Biol Chem 385(3–4):223–230

    CAS  Google Scholar 

  91. Stolze IP, Mole DR, Ratcliffe PJ (2006). Novartis Found Symp 272:25–36

    Google Scholar 

  92. Flashman E, Hoffart LM, Hamed RB, Bollinger Jr JM, Krebs C, Schofield CJ (2010). FEBS J 277(19):4089–4099

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Marcelo KL, Means AR, York B (2016). Trends Endocrinol Metab 27(10):706–718

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sorensen AB, Sondergaard MT, Overgaard MT (2013). FEBS J 280(21):5511–5532

    CAS  PubMed  Google Scholar 

  95. Xia Z, Storm DR (2005). Nat Rev Neurosci 6(4):267–276

    CAS  PubMed  Google Scholar 

  96. Zielinski RE (1998). Annu Rev Plant Physiol Plant Mol Biol 49(1):697–725

    CAS  PubMed  Google Scholar 

  97. Carafoli E, Krebs J (2016). J Biol Chem 291(40):20849–20857

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Cotruvo JA, Featherston ER, Mattocks JA, Ho JV, Laremore TN (2018). J Am Chem Soc 140(44):15056–15061

    PubMed  Google Scholar 

  99. Foster AW, Osman D, Robinson NJ (2014). J Biol Chem 289(41):28095–28003

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mirts EN, Bhagi-Damodaran A, Lu Y (2019). Acc Chem Res 52(4):935–944

    CAS  PubMed  Google Scholar 

  101. Lu Y, Yeung N, Sieracki N, Marshall NM (2009). Nature 460:855–859

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank all the Lu group members for their contributions to some of the relevant results described in this chapter, which have been generally supported by the US National Science Foundation (CHE-1710241) and National Institute of Health (GM062211). Some work described in this chapter was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018420). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ambika Bhagi-Damodaran or Yi Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagi-Damodaran, A., Lu, Y. (2019). The Periodic Table’s Impact on Bioinorganic Chemistry and Biology’s Selective Use of Metal Ions. In: Mingos, D. (eds) The Periodic Table II. Structure and Bonding, vol 182. Springer, Cham. https://doi.org/10.1007/430_2019_45

Download citation

Publish with us

Policies and ethics