Skip to main content

Microbial Processes of Carbon and Sulfur Cycles in Sediments of the Russian Sector of the Baltic Sea

  • Chapter
  • First Online:
The Handbook of Environmental Chemistry

Abstract

Comprehensive microbiological and biogeochemical studies of silts of the Gdansk Deep, Curonian and Vistula lagoons have been carried out from 2007 to 2015. Twelve pockmarks were outlined and the distribution of gassy mud was refined. Diffusion fluxes of methane from the upper (0–5 cm) layer of the seabed into near bottom waters ranged from 0.004 mmol/(m2 day) in gas-free mud to 3.3 mmol/(m2 day) in pockmark sediments and 0.11 and 0.135 mmol/(m2 day) for the Vistula and Curonian lagoons on average, respectively. Compared to gas-free mud (1.5–30 μmol/dm3 at the 0–5 cm) in the pockmark sediments, the methane content sharply increased from the surface (30–1,279 μmol/dm3) to 2,888–4,530 μmol/dm3 at the 15–30 cm layer. The maximum methane concentrations in the lagoons sediments (up to 877 μmol/dm3) were found in the Curonian Lagoon, which is explained by the influence of freshwater conditions and high content of Corg in sediments. Methane concentrations and fluxes in the Vistula Lagoon are reduced by a periodic inflow of sulfate water from the open sea, which contributes to the decomposition of Corg through sulfate reduction. Therefore, the intensity of sulfate reduction in the sediments of the Vistula Lagoon reached 39 μmol/(dm3 day), and in the Curonian Lagoon – 24 μmol/(dm3 day). The intensity of methane oxidation was confined to the upper 10 cm of the sediment and was more pronounced in the Curonian Lagoon (2.9 μmol/(dm3 day)) compared to the Vistula Lagoon (1.3 μmol/(dm3 day)). Significantly large values of the bacterial sulfate reduction and methane anaerobic oxidation with a maximum (72 μmol S/(dm3 day) and 80 μmol/(dm3 day), respectively) were recorded in the mud of the Gdansk Deep (20–40 cm). The composition of the microbial community of the reduced pockmark sediments was studied using the analysis of a fragment of the 16S rRNA gene and by the method of fluorescence in situ hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Emelyanov EM, Lukashin VN (1986) Geochemistry of the sedimentary process in the Baltic Sea. Nauka, Moscow, 221 pp (Geokhimiya osadochnogo protsessa v Baltiyskom more (1986) Pod red. Yemel'yanova YeM, Lukashina VN. M.: Nauka. 221 ss) [in Russian]

    Google Scholar 

  2. Geodekyan AA, Trotsyuk VY, Avilov VI, Berlin YM, Bolshakov AM, Zhitinets RP (1979) Hydrocarbon gases in the waters of the Baltic Sea. Oceanology 19(4):638–643. (Geodekyan AA, Trotsyuk VYa, Avilov VI, Berlin YuM, Bolshakov AM, Zhitinets RP (1979) Uglevodorodnyye gazy v vodakh Baltiyskogo moray. Okeanologiya. 19(4). ss 638–643) [in Russian]

    Google Scholar 

  3. Whitticar MJ (1978) Relationships of interstitial gases and fluids during early diagenesis in some marine sediments. Doctoral thesis, University of Kiel

    Google Scholar 

  4. Werner F (1978) Deeps in mud sediments (Eckernförde Bay, Baltic Sea), related to sub-bottom and currents. Meyniana 30:99–104

    Google Scholar 

  5. Blazhchishin AI, Lange D, Svinarenko VK, Trotsyuk VY (1987) Gas-turbine sediments of the Baltic Sea. Lithol Miner 5:126–131. (Blazhchishin AI, Lange D, Svinarenko VK, Trotsyuk VYa (1987) Gazoturbirovannyye osadki Baltiyskogo morya. Litologiya i poleznyye iskopayemyye. 5. ss 126–131) [in Russian]

    Google Scholar 

  6. Brodecka A, Majewski P, Bolałek J, Klusek Z (2013) Geochemical and acoustic evidence for the occurrence of methane in sediments of the polish sector of the southern Baltic Sea. Oceanologia 55(4):951–978

    Google Scholar 

  7. Rosa B (1986) Pokrywa osadowa i rzezba dna. Baltyk poludniowy, Gdansk, pp 72–172

    Google Scholar 

  8. Blazhchishin AI (1998) Paleogeography and evolution of late quaternary sedimentation in the Baltic Sea. Yantarnyy Skaz, Kaliningrad, 160 pp (Blazhchishin AI Paleogeografiya i evolyutsiya pozdnechetvertichnogo osadkonakopleniya v Baltiyskom more. Kaliningrad: Yantarnyy skaz, 1998. 160 s) [in Russian]

    Google Scholar 

  9. Emelyanov EM (2002) Geology of the Gdansk Basin, Baltic Sea. Yantarnyi skaz, Kaliningrad, p 496

    Google Scholar 

  10. Korneev OY, Rybalko AE, Fedorova NK (2005) Results of state monitoring of the state of the subsoil of the Gulf of Finland. Explor Prot Subsoil 1:58–61. (Korneyev OYu, Rybalko AYe, Fedorova NK (2005) Rezul'taty gosudarstvennogo monitoringa sostoyaniya nedr Finskogo zaliva. Razvedka i okhrana nedr. 1. ss 58–6) [in Russian]

    Google Scholar 

  11. Ivanova VV, Kirievskaya DV, Bolotov AE (2011) Geochemical characteristics of bottom sediments in the pockmark zone in the eastern part of the Gulf of Finland. Baltic Reg 1(7):78–89. (Ivanova VV, Kiriyevskaya DV, Bolotov AYe (2011) Geokhimicheskaya kharakteristika donnykh otlozheniy v zone pokmarkov v vostochnoy chasti Finskogo zaliva. Baltiyskiy region. 1(7). ss 78–89) [in Russian]

    Google Scholar 

  12. Zhamoyda VA, Ryabchuk DV, Spiridonov MA, Grigoriev AG, Pimenov NV, Amantov AV, Kropachev YP, Neevin IA (2013) Geological and geomorphological conditions for the formation of pockmarks in the eastern part of the Gulf of Finland. Reg Geol Metallog 5:25–37. (Zhamoyda VA, Ryabchuk DV, Spiridonov MA, Grigoriev AG, Pimenov NV, Amantov AV, Kropachev YuP, Neevin IA (2013) Geologo-geomorfologicheskiye usloviya formirovaniya pok-makov v vostochnoy chasti Finskogo zaliva. Regional'naya geologiya i metallogeniya. ss 25–37) [in Russian]

    Google Scholar 

  13. Lein AY, Namsaraev BB, Trotsyuk VY, Ivanov MV (1981) Bacterial metanogenesis in Holocene sediments of the Baltic Sea. Geomicrobiol J 2(4):299–317

    Google Scholar 

  14. Lein AY, Ivanov MV (2009) Lisitsyn AP (ed) Biogeochemical cycle of methane in the ocean. Nauka, Moscow, 546 pp (Lein AYu, Ivanov MV (2009) Biogeokhimicheskiy tsikl metana v okeane/Otv Red. AP Lisitsyn. M.: Nauka. 546 ss) [in Russian]

    Google Scholar 

  15. Bussmann I, Suess E (1999) Ground-water seepage in Eckernforde Bay (Western Baltic Sea): effect on methane and salinity distribution of the water column. Cont Shelf Res 18:1795–1806

    Google Scholar 

  16. Christopher SM, Daniel BA, Alperin MJ (1999) Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernförde Bay, German Baltic Sea. Am J Sci 299:589–610

    Google Scholar 

  17. Sorokin YI (1999) Radioisotopic methods in hydrobiology. Springer, Berlin, p 321

    Google Scholar 

  18. Frenzel P, Rothfuss F, Conrad R (1993) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol Fertil Soils 14:84–89

    Google Scholar 

  19. Schulz HD (2000) Quantification of early diagenesis: dissolved constituents in marine pore water. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 85–128

    Google Scholar 

  20. Iversen N, Jørgensen BB (1993) Diffusion-coefficients of sulfate and methane in marine sediments – influence of porosity. Geochim Cosmochim Acta 57(3):571–578

    Google Scholar 

  21. Rodrigues UM, Kroll RG (1985) The direct epifluorescent filter technique (DEFT): increased selectivity, sensitivity and rapidity. J Appl Bacteriol 59(6):493–499

    Google Scholar 

  22. Pimenov NV, Ulyanova MO, Kanapatsky TA, Veslopolova EF, Sigalevich PA, Sivkov VV (2010) Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdansk Basin, Baltic Sea. Geo-Mar Lett 30(3/4):439–448

    Google Scholar 

  23. Ivanov MV, Lein AY, Miller YM, Yusupov SK, Pimenov NV, Verli B, Rusanov II, Zender A (2000) The effect of microorganisms and seasonal factors on the isotopic composition of particulate organic carbon from the Black Sea. Microbiology (Mikrobiologiya). 69(4):541–552

    Google Scholar 

  24. Ulyanova M, Sivkov V, Kanapatsky T, Sigalevich P, Pimenov N (2013) Methane fluxes in the southeastern Baltic Sea. Geo-Mar Lett 32(5–6):535–544

    Google Scholar 

  25. Pimenov NV, Kanapatskii TA, Ivanov MV, Ul'yanova MO, Sivkov VV (2008) Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea. Microbiology (Mikrobiologiya). 77(5):579–586

    Google Scholar 

  26. Drozdov VN, Sergeeva VN, Maksimenko SY, Zemskaya TI (2006) Computer system for image analysis of fluorescently stained bacteria. Microbiology (Mikrobiologiya) 75(6):751–754

    Google Scholar 

  27. Ishii K, Muβmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybrid ization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50:203–212

    Google Scholar 

  28. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S ribosomal RNA targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Google Scholar 

  29. Raskin L, Stromely JM, Rittmann BE, Stahl DA (1994) Group specific 16S ribosomal RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    Google Scholar 

  30. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with ribosomal RNA targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Google Scholar 

  31. Manz W, Eisenbrecher M, Neu TR, Szewzyk U (1998) Abundance and spatial organization of gram negative sulfate reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25:43–61

    Google Scholar 

  32. Widdel F, Back F (1992) The genus desulfotomaculum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The procariotes. Springer, New York, pp 787–794

    Google Scholar 

  33. Trüper HG, Schlegel HG (1964) Sulfur metabolism in thiorhodaceae. I. Quantitative measurements in growing cells of Chromatium okenii, Antonie van Leeuwenhoek. J Microbiol Serol 30:225–238

    Google Scholar 

  34. Hristova KR, Mau M, Zheng D, Aminov RI, Mackie RI, Gaskins HR, Raskin L (2000) Desulfotomaculum genus and subgenus specific 16S rRNA hybridization probes for environmental studies. Environ Microbiol 2:143–159

    Google Scholar 

  35. Shubenkova OV, Zemskaya TI, Chernitsyna SM, Khlystov OM, Triboi TI (2005) The first results of an investigation into the phylogenetic diversity of microorganisms in southern Baikal sediments in the region of subsurface discharge of methane hydrates. Microbiology (Mikrobiologiya) 74(3):370–377

    Google Scholar 

  36. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of E. coli with plasmids. Gene 26:23–28

    Google Scholar 

  37. Petrov OV (2010) Atlas of geological and ecological-geological maps of the Russian sector of the Baltic Sea. VSEGEI, St. Petersburg, 78 pp (Atlas geologicheskikh i ekologo-geologicheskikh kart Rossiyskogo sektora Baltiyskogo morya. (2010). Gl. red. OV Petrov. SPb.: VSEGEI. 78 s) [in Russian]

    Google Scholar 

  38. Bubnova ES, Kapustina MV (2019) Hydrological and hydrochemical conditions in the bottom layer of the Baltic Sea Gdansk deep in 2003-2018. KSTU News 55:47–58 (in Russian)

    Google Scholar 

  39. Rak D (2016) The inflow in the Baltic proper as recorded in January–February 2015. Oceanologia 58:241–247

    Google Scholar 

  40. Matthäus W, Lass HU (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25:280–286

    Google Scholar 

  41. Mohrholz V, Naumann M, Nausch G, Krüger S, Gräwe U (2015) Fresh oxygen for the Baltic Sea. an exceptional saline inflow after a decade of stagnation. J Mar Syst 148:152–166

    Google Scholar 

  42. Mohrholz V (2018) Major Baltic inflow statistics. Front Mar Sci 5:384

    Google Scholar 

  43. Carstensen J, Andersen JH, Gustafsson BG, Conley DJ (2014) Deoxygenation of the Baltic Sea during the last century. PNAS 111(15):5628–5633

    Google Scholar 

  44. Geodekyan AA, Romankevich EA, Trotsyuk VY (1997) Geochemistry of waters and bottom sediments of the Baltic Sea in areas of development of gas craters and geoacoustic anomalies. IO RAN, Moscow, 150 pp (Geokhimiya vod i donnykh osadkov Baltiyskogo morya v rayonakh razvitiya gazovykh kraterov i geoakusticheskikh anomaliy (1997) Pod red. Geodekyana AA, Romankevicha YeA, Trotsyuka VYa. M.: IO RAN, 150 s) [in Russian]

    Google Scholar 

  45. Mojski JE (1995) Structural conditions of Pleistocene ice-sheet development. Geological atlas of the Southern Baltic, 1:500 000. Sopot, Warsaw, pp 20–22

    Google Scholar 

  46. Kanapatsky TA, Ulyanova MO, Shubenkova OV, Pimenov NV (2017) Gassy sediments in the Gdansk deep: geology, geochemistry, microbial processes. In the monograph “the Baltic Sea system”. Publishing House: “Scientific World”, Moscow, pp 474–497. (Kanapatsky TA, Ulyanova MO, Shubenkova OV, Pimenov NV (2017) Gazonasyshchennyye osadki v Gdan'skoy vpadine: geologiya, geokhimiya, mikrobnyye protsessy. V monografii “Sistema Baltiyskogo morya”. Moskva: Izd.: “Nauchnyy mir”. ss 474–497) [in Russian]

    Google Scholar 

  47. Jaśniewicz D, Klusek Z, Brodecka-Goluch A, Bolałek J (2019) Acoustic investigations of shallow gas in the southern Baltic Sea (polish exclusive economic zone): a review. Geo-Mar Lett 39:1–17

    Google Scholar 

  48. Ulyanova M, Malakhova T, Evtushenko D, Artemov Y, Egorov V (2021) Comparison of methane distribution in bottom sediments of shallow lagoons of the Baltic and Black Seas. Russ J Earth Sci 21:ES1003

    Google Scholar 

  49. Geodekyan AA, Berlin YM, Bolshakov AM, Trotsyuk VY (1991) Features of the distribution of methane in sediments and bottom water of the southern Baltic. Oceanology 31(1):76–83. (Geodekyan AA, Berlin YuM, Bol'shakov AM, Trotsyuk VYa (1991) Osobennosti raspredeleniya metana v osadkakh i pridonnoy vode Yuzhnoy Baltiki. Okeanologiya. 31(1). ss 76–83) [in Russian]

    Google Scholar 

  50. Thießen O, Schmidt M, Theilen F, Schmitt M, Klein G (2006) Methane formation and distribution of acoustic turbidity in organic-rich surface sediments in the Arkona Basin, Baltic Sea. Cont Shelf Res 26(19):2469–2483

    Google Scholar 

  51. Merkel AY, Chernykh NA, Kanapatskii TA, Pimenov NV (2010) Detection of methanotrophic archaea in pockmark sediments (Gdansk Deep, Baltic Sea) by sequence analysis of the gene encoding the α-subunit of methyl-coenzyme m reductase. Microbiology (Mikrobiologiya). 79(6):849–852

    Google Scholar 

  52. Shubenkova OV, Likhoshvai AV, Kanapatskii TA, Pimenov NV (2010) Microbial community of reduced pockmark sediments (Gdansk Deep, Baltic Sea). Microbiology (Mikrobiologiya) 79(6):799–808

    Google Scholar 

  53. Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulfate reduction. Nature 296:643–645

    Google Scholar 

  54. Iversen N (1996) Methane oxidation in coastal marine environments. In: Murrell JC, Kelly DP (eds) Microbiology of atmospheric trace gases. NATO ASI series 139. Plenum, New York, pp 51–68

    Google Scholar 

  55. Lein AY, Weinstein MB, Namsaraev BB, Kashparova EV, Matrosov AG, Bondar VA, Ivanov MV (1982) Geochemistry of anaerobic diagenesis of modern sediments of the Baltic Sea. Geochemistry 3:428–440. (Lein AYu, Weinstein MB, Namsaraev BB, Kashparova EV, Matrosov AG, Bondar VA, Ivanov MV (1982) Geokhimiya anaerobnogo diageneza sovremennykh osadkov Baltiyskogo morya. Geokhimiya. 3. ss 428–440) [in Russian]

    Google Scholar 

  56. Alperin MJ, Reeburgh WS (1984) Geochemical observation supporting anaerobic methane oxidation. Microbial growth on C1 compounds. American Society for Microbiology, Washington, pp 282–289

    Google Scholar 

  57. Hoechler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment-evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycle 8(4):451–463

    Google Scholar 

  58. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  59. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Google Scholar 

  60. Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2(5):477–484

    Google Scholar 

  61. Michaelis W, Seifert P, Nauhaus K, Treude T, Thiel V et al (2002) Microbial reefs in the Black Sea fuelled by anaerobic oxidation of methane. Science 297:1013–1015

    Google Scholar 

  62. Whitticar MJ (2002) Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay. Mar Geol 182:29–53

    Google Scholar 

  63. Reeburgh WS (1976) Methane consumption in Cariaco trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Google Scholar 

  64. Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300

    Google Scholar 

  65. Dodonov AE, Namestnikov YG, Yakushova AF (1976) The newest tectonics of the southeastern part of the Baltic syneclise. Moscow State University Publishing House, Moscow, 196 pp (Dodonov AYe, Namestnikov YuG, Yakushova AF (1976) Noveyshaya tektonika yugo-vostochnoy chasti Baltiyskoy sineklizy. M.: Izd-vo MGU, 196 s) [in Russian]

    Google Scholar 

  66. Aleksandrov SV (2010) Biological production and eutrophication of Baltic Sea estuarine ecosystems: the Curonian and Vistula Lagoons. Mar Pollut Bull 61(4–6):205–210

    Google Scholar 

  67. Chechko VA (2006) Modern processes of sedimentation in the Vistula Lagoon (Baltic Sea). Extended abstract of Cand. Sci. Dissertation, Kaliningrad

    Google Scholar 

  68. Pustelnikovas O (1998) The geochemistry of sediments of the Curonian Lagoon (Baltic Sea). Institute of Geography, Vilnius

    Google Scholar 

  69. Pimenov NV, Ul’yanova MO, Kanapatskii TA, Mitskevich IN, Rusanov II, Sigalevich PA, Nemirovskaya IA, Sivkov VV (2013) Sulfate reduction, methanogenesis, and methane oxidation in the upper sediments of the Vistula and Curonian Lagoons, Baltic Sea. Microbiology 82(2):224–233

    Google Scholar 

  70. Kravtsov VA, Kravchishina MD, Pankratova NA, Kuleshov AF (2002) The recent sedimentation processes in the Curonian and Vistula Lagoons. In: Emelyanov EM (ed) Geology of the Gdansk Basin, Baltic Sea. Yantarny Skaz, Kaliningrad, pp 351–364

    Google Scholar 

  71. Alperin MJ, Blair NE, Albert DB, Hoehler TM, Martens CS (1992) Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment. Global Biogeochem Cycles 6:271–291

    Google Scholar 

  72. Martens CS, Albert DB, Alperin MJ (1999) Stable isotope tracing of anaerobic methane oxidation in the gassy sediment of Ekernforde Bay, German Baltic Sea. Am J Sci 299:589–610

    Google Scholar 

  73. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72(5):3685–3695

    Google Scholar 

  74. Edlund A, Hardeman F, Jansson JK, Sjoling S (2008) Active bacterial community structure along vertical redox gradients in Baltic Sea sediment. Environ Microbiol 10(8):2051–2063

    Google Scholar 

  75. Teaske A, Hinrichs K, Edgcomb V, Comez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiolol 68(4):1994–2007

    Google Scholar 

  76. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfat-reducing bacteria. Environ Microbiol 11(1):209–219

    Google Scholar 

  77. Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen BB (2009) Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11(5):1278–1291

    Google Scholar 

  78. Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442

    Google Scholar 

  79. Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483–5491

    Google Scholar 

  80. Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Google Scholar 

  81. Juottonen H, Galand PE, Yrjälä K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 157:914–921

    Google Scholar 

  82. Dang H, Luan X, Zhao J, Li J (2009) Diverse and novel nifH and nifH-like gene sequences in the deep-sea methane seep sediments of the Okhotsk Sea. Appl Environ Microbiol 75(7):2238–2245

    Google Scholar 

  83. Treude T, Krüger M, Boetius A, Jørgensen BB (2005) Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnol Oceonogr 50:1771–1786

    Google Scholar 

Download references

Acknowledgements

The study was done with a partial support of the State assignment of Shirshov Institute of Oceanology RAS (Theme No. 0128-2021-0012) and by the Ministry of Science and Higher Education of the Russian Federation Research Center of Biotechnology RAS (State assignment).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanapatskiy, T.A., Ulyanova, M.O., Iasakov, T.R., Shubenkova, O.V., Pimenov, N.V. (2021). Microbial Processes of Carbon and Sulfur Cycles in Sediments of the Russian Sector of the Baltic Sea. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2021_818

Download citation

  • DOI: https://doi.org/10.1007/698_2021_818

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics