Skip to main content

Materials Used as Tissue Phantoms in Medical Simulation

  • Chapter
  • First Online:
Studies in Mechanobiology, Tissue Engineering and Biomaterials

Abstract

Medical simulation is a technique used to train students and professional healthcare providers to perform a variety of clinical procedures without placing patients at risk. While medical simulation has been shown to reduce medical errors and associated costs, there exists a need for more realistic tissue analogue materials that account for tissue biomechanical responses in various situations. This chapter provides an overview of materials used in medical simulation by discussing concepts used in the mechanical characterization of materials, the complex structure and mechanical properties of biological tissues, the chemical structure and mechanical properties of materials commonly used in medical simulators, the designs of medical simulation devices on the market today and those reported in literature, and the recent developments and future directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. America C on Q of HC in, Medicine I: To Err Is Human: Building a Safer Health System. National Academies Press, Washington (2000)

    Google Scholar 

  2. Pham, J.C., Aswani, M.S., Rosen, M., et al.: Reducing medical errors and adverse events. Annu. Rev. Med. 63, 447–463 (2012). Doi:10.1146/annurev-med-061410-121352

    Article  CAS  PubMed  Google Scholar 

  3. FastStats: http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. Accessed 14 June 2016

  4. Van Den Bos, J., Rustagi, K., Gray, T., et al.: The $17.1 billion problem: the annual cost of measurable medical errors. Health Aff. (Millwood) 30, 596–603 (2011). Doi:10.1377/hlthaff.2011.0084

    Article  Google Scholar 

  5. Kunkler, K.: The role of medical simulation: an overview. Int. J. Med. Robot. 2, 203–210 (2006). Doi:10.1002/rcs.101

    Article  PubMed  Google Scholar 

  6. Doherty-Restrepo, J.L., Tivener, K.: Current literature summary: review of high-fidelity simulation in professional education. Athl. Train. Educ. J. 9, 190–192 (2014). Doi:10.4085/0904190

    Article  Google Scholar 

  7. Cox, M., Irby, D.M., Reznick, R.K., MacRae, H.: Teaching surgical skills—changes in the wind. N. Engl. J. Med. 355, 2664–2669 (2006). Doi:10.1056/NEJMra054785

    Article  Google Scholar 

  8. Stunt, J., Wulms, P.-B., Kerkhoffs, G., et al.: How valid are commercially available medical simulators? Adv. Med. Educ. Pract., 385 (2014). Doi:10.2147/AMEP.S63435

  9. Cohen, J., Thompson, C.C.: The next generation of endoscopic simulation. Am. J. Gastroenterol. 108, 1036–1039 (2013). Doi:10.1038/ajg.2012.390

    Article  ADS  PubMed  Google Scholar 

  10. Nesbitt, J.C., St Julien, J., Absi, T.S., et al.: Tissue-based coronary surgery simulation: medical student deliberate practice can achieve equivalency to senior surgery residents. J. Thorac. Cardiovasc. Surg. 145, 1453–1459 (2013). Doi:10.1016/j.jtcvs.2013.02.048

    Article  PubMed  Google Scholar 

  11. Cohen, J., Bosworth, B.P., Chak, A., et al.: Preservation and incorporation of valuable endoscopic innovations (PIVI) on the use of endoscopy simulators for training and assessing skill. Gastrointest. Endosc. 76, 471–475 (2012). Doi:10.1016/j.gie.2012.03.248

    Article  ADS  PubMed  Google Scholar 

  12. Lim, Y.-J., Deo, D., Singh, T.P., et al.: In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation. Surg. Endosc. 23, 1298–1307 (2009). Doi:10.1007/s00464-008-0154-z

    Article  PubMed  Google Scholar 

  13. Barsness, K.A., Rooney, D.M., Davis, L.M.: The development and evaluation of a novel thoracoscopic diaphragmatic hernia repair simulator. J. Laparoendosc. Adv. Surg. Tech. 23, 714–718 (2013). Doi:10.1089/lap.2013.0196

    Article  Google Scholar 

  14. Wurm, G., Lehner, M., Tomancok, B., et al.: Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg. Innov. 18, 294–306 (2011). Doi:10.1177/1553350610395031

    Article  PubMed  Google Scholar 

  15. Sakezles, C.: Synthetic human tissue models can reduce the cost of device development. Med. Device Technol. 20 (2009)

    Google Scholar 

  16. Poniatowski, L.H., Wolf, J.S., Nakada, S.Y., et al.: Validity and acceptability of a high-fidelity physical simulation model for training of laparoscopic pyeloplasty. J. Endourol. 28, 393–398 (2014). Doi:10.1089/end.2013.0678

    Article  PubMed  Google Scholar 

  17. Hibbeler, R.C.: Mechanics of materials. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  18. Athanasiou, K.A., Natoli, R.M.: Introduction to continuum biomechanics. Synth. Lect. Biomed. Eng. 3, 1–206 (2008). Doi:10.2200/S00121ED1V01Y200805BME019

    Article  Google Scholar 

  19. Özkaya, N., Nordin, M., Goldsheyder, D., Leger, D.: Mechanical Properties of Biological Tissues. In: Fundam. Biomech., pp. 221–236. Springer, New York (2012)

    Google Scholar 

  20. Charlebois, M., Jirásek, M., Zysset, P.K.: A nonlocal constitutive model for trabecular bone softening in compression. Biomech. Model. Mechanobiol. 9, 597–611 (2010). Doi:10.1007/s10237-010-0200-3

    Article  PubMed  Google Scholar 

  21. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000). Doi:10.5254/1.3547602

    Article  CAS  Google Scholar 

  22. Bower, A.F.: Applied Mechanics of Solids. CRC Press (2009). https://www.crcpress.com/Applied-Mechanics-of-Solids/Bower/p/book/9781439802472. Accessed 14 June 2016

    Google Scholar 

  23. Johansson, T., Meier, P., Blickhan, R.: A finite-element model for the mechanical analysis of skeletal muscles. J. Theor. Biol. 206, 131–149 (2000). Doi:10.1006/jtbi.2000.2109

    Article  CAS  PubMed  Google Scholar 

  24. Zobitz, M.E., Luo, Z.-P., An, K.-N.: Determination of the compressive material properties of the supraspinatus tendon. J. Biomech. Eng. 123, 47–51 (2000). Doi:10.1115/1.1339816

    Article  Google Scholar 

  25. Shearer, T.: A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure. J. Biomech. 48, 290–297 (2015). Doi:10.1016/j.jbiomech.2014.11.031

    Article  PubMed  Google Scholar 

  26. Groves, R.B., Coulman, S.A., Birchall, J.C., Evans, S.L.: An anisotropic, hyperelastic model for skin: Experimental measurements, finite element modelling and identification of parameters for human and murine skin. J. Mech. Behav. Biomed. Mater. 18, 167–180 (2013). Doi:10.1016/j.jmbbm.2012.10.021

    Article  PubMed  Google Scholar 

  27. Kaster, T., Sack, I., Samani, A.: Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44, 1158–1163 (2011). Doi:10.1016/j.jbiomech.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  28. Roeder, R.K.: Mechanical characterization of biomaterials. Charact. Biomater. Newnes, 49–104 (2013)

    Google Scholar 

  29. Flügge, W.: Viscoelasticity. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  30. Oyen, M.L.: Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59, 44–59 (2013). Doi:10.1179/1743280413Y.0000000022

    Article  Google Scholar 

  31. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–84 (1980). Doi:10.1115/1.3138202

    Article  CAS  PubMed  Google Scholar 

  32. Simon, B.R.: Multiphase poroelastic finite element models for soft tissue structures. Appl. Mech. Rev. 45, 191–218 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  33. Cheng, S., Bilston, L.E.: Unconfined compression of white matter. J. Biomech. 40, 117–124 (2007). Doi:10.1016/j.jbiomech.2005.11.004

    Article  PubMed  Google Scholar 

  34. Raghunathan, S., Sparks, J.L.: Biphasic Poroviscoelastic Modeling of the Unconfined Compression of Porcine Liver Tissue, pp. 787–788 (2009). Doi:10.1115/SBC2009-205045

  35. Moran, E.C., LeRoith, T., Smith, T.L., et al.: Porohyperviscoelastic model simultaneously predicts parenchymal fluid pressure and reaction force in perfused liver. J. Biomech. Eng. 134, 91002 (2012)

    Article  Google Scholar 

  36. Evans, D.W., Moran, E.C., Baptista, P.M., et al.: Scale-dependent mechanical properties of native and decellularized liver tissue. Biomech. Model. Mechanobiol. 12, 569–580 (2013)

    Article  PubMed  Google Scholar 

  37. Nishii, K., Reese, G., Moran, E.C., Sparks, J.L.: Multiscale computational model of fluid flow and matrix deformation in decellularized liver. J. Mech. Behav. Biomed. Mater. 57, 201–214 (2016). Doi:10.1016/j.jmbbm.2015.11.033

    Article  PubMed  Google Scholar 

  38. Ní Annaidh, A., Bruyère, K., Destrade, M., et al.: Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139–148 (2012). Doi:10.1016/j.jmbbm.2011.08.016

    Article  PubMed  Google Scholar 

  39. Gennisson, J.-L., Deffieux, T., Macé, E., et al.: Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med. Biol. 36, 789–801 (2010). Doi:10.1016/j.ultrasmedbio.2010.02.013

    Article  PubMed  Google Scholar 

  40. Sasaki, N., Matsushima, N., Ikawa, T., et al.: Orientation of bone mineral and its role in the anisotropic mechanical properties of bone—transverse anisotropy. J. Biomech. 22, 157–164 (1989). Doi:10.1016/0021-9290(89)90038-9

    Article  CAS  PubMed  Google Scholar 

  41. Ohashi, T., Abe, H., Matsumoto, T., Sato, M.: Pipette aspiration technique for the measurement of nonlinear and anisotropic mechanical properties of blood vessel walls under biaxial stretch. J. Biomech. 38, 2248–2256 (2005). Doi:10.1016/j.jbiomech.2004.09.019

    Article  PubMed  Google Scholar 

  42. Chagnon, G., Rebouah, M., Favier, D.: Hyperelastic energy densities for soft biological tissues: a review. J. Elast. 120, 129–160 (2015). Doi:10.1007/s10659-014-9508-z

    Article  MathSciNet  MATH  Google Scholar 

  43. Macosko, C.W.: Rheology: Principles, Measurements, and Applications. VCH (1994)

    Google Scholar 

  44. Junqueira, L.C., Carneiro, J.: Basic Histology: Text and Atlas. McGraw-Hill, New York (2005)

    Google Scholar 

  45. Moore, K.L., Dalley, A.F., Agur, A.M.R.: Clinically Oriented Anatomy. Lippincott Williams & Wilkins, Philadelphia (2013)

    Google Scholar 

  46. Clarke, B.: Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. CJASN 3, S131–S139 (2008). Doi:10.2215/CJN.04151206

    Article  CAS  PubMed  Google Scholar 

  47. Jor, J.W.Y., Parker, M.D., Taberner, A.J., et al.: Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 539–556 (2013). Doi:10.1002/wsbm.1228

    Article  PubMed  Google Scholar 

  48. Simms, C.K.: Passive skeletal muscle mechanical behaviour: considerations for constitutive modelling. Comput. Meth. Biomech. Biomed. Eng. 15, 271 (2012). Doi:10.1080/10255842.2012.713591

    Article  Google Scholar 

  49. Ren, L., Yang, P., Wang, Z., et al.: Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J. Mech. Behav. Biomed. Mater. 50, 104–122 (2015). Doi:10.1016/j.jmbbm.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  50. Vito, R.P., Dixon, S.A.: Blood vessel constitutive models—1995–2002. Annu. Rev. Biomed. Eng. 5, 413–439 (2003). Doi:10.1146/annurev.bioeng.5.011303.120719

    Article  CAS  PubMed  Google Scholar 

  51. Agache, P.G., Monneur, C., Leveque, J.L., De Rigal, J.: Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980). Doi:10.1007/BF00406415

    Article  CAS  PubMed  Google Scholar 

  52. Ottenio, M., Tran, D., Ní Annaidh, A., et al.: Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J. Mech. Behav. Biomed. Mater. 41, 241–250 (2015). Doi:10.1016/j.jmbbm.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  53. John, W., Chow, W.G.D.: Determining the force-length-velocity relations of the quadriceps muscles: II. Maximum muscle stress. Hum. Kinet. J. 15, 191–199 (1999)

    Google Scholar 

  54. Chakouch, M.K., Charleux, F., Bensamoun, S.F.: Quantifying the elastic property of nine thigh muscles using magnetic resonance elastography. PLoS ONE 10, e0138873 (2015). Doi:10.1371/journal.pone.0138873

    Article  PubMed  PubMed Central  Google Scholar 

  55. Imbert, L., Aurégan, J.-C., Pernelle, K., Hoc, T.: Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone 65, 18–24 (2014). Doi:10.1016/j.bone.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  56. Kobielarz, M., Chwiłkowska, A., Turek, A., et al.: Mechanical properties of selective digestion of elastin and collagen from human aortas (2015). Doi:10.5277/ABB-00184-2014-02

  57. Karimi, A., Navidbakhsh, M., Shojaei, A., Faghihi, S.: Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater. Sci. Eng. C 33, 2550–2554 (2013). Doi:10.1016/j.msec.2013.02.016

    Article  CAS  Google Scholar 

  58. Alhosseini Hamedani, B., Navidbakhsh, M., Ahmadi Tafti, H.: Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomed. Eng. OnLine 11, 59 (2012). Doi:10.1186/1475-925X-11-59

    Article  Google Scholar 

  59. Egorov, V.I., Schastlivtsev, I.V., Prut, E.V., et al.: Mechanical properties of the human gastrointestinal tract. J. Biomech. 35, 1417–1425 (2002). Doi:10.1016/S0021-9290(02)00084-2

    Article  PubMed  Google Scholar 

  60. Nava, A., Mazza, E., Furrer, M., et al.: In vivo mechanical characterization of human liver. Med. Image Anal. 12, 203–216 (2008). Doi:10.1016/j.media.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  61. Fernández Farrés, I., Norton, I.T.: Formation kinetics and rheology of alginate fluid gels produced by in-situ calcium release. Food Hydrocoll. 40, 76–84 (2014). Doi:10.1016/j.foodhyd.2014.02.005

    Article  Google Scholar 

  62. Draget, K.I., Østgaard, K., Smidsrød, O.: Alginate-based solid media for plant tissue culture. Appl. Microbiol. Biotechnol. 31, 79–83 (1989). Doi:10.1007/BF00252532

    Article  CAS  Google Scholar 

  63. Drury, J.L., Dennis, R.G., Mooney, D.J.: The tensile properties of alginate hydrogels. Biomaterials 25, 3187–3199 (2004). Doi:10.1016/j.biomaterials.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  64. Yang, C.H., Wang, M.X., Haider, H., et al.: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5, 10418–10422 (2013). Doi:10.1021/am403966x

    Article  CAS  PubMed  Google Scholar 

  65. Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006). Doi:10.1002/adma.200501612

    Article  CAS  Google Scholar 

  66. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012). Doi:10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  67. Fitzgerald, M.M., Bootsma, K., Berberich, J.A., Sparks, J.L.: Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue. Biomacromolecules 16, 1497–1505 (2015). Doi:10.1021/bm501845j

    Article  CAS  PubMed  Google Scholar 

  68. Kuo, C.K., Ma, P.X.: Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22, 511–521 (2001). Doi:10.1016/S0142-9612(00)00201-5

    Article  CAS  PubMed  Google Scholar 

  69. Draget, K.I., Østgaard, K., Smidsrød, O.: Homogeneous alginate gels: a technical approach. Carbohydr. Polym. 14, 159–178 (1990). Doi:10.1016/0144-8617(90)90028-Q

    Article  CAS  Google Scholar 

  70. Sun, J.-Y., Zhao, X., Illeperuma, W.R.K., et al.: Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). Doi:10.1038/nature11409

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mancini, M., Moresi, M., Rancini, R.: Mechanical properties of alginate gels: empirical characterisation. J. Food Eng. 39, 369–378 (1999). Doi:10.1016/S0260-8774(99)00022-9

    Article  Google Scholar 

  72. Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E.: Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, Cambridge (2004)

    Google Scholar 

  73. Stellwagen, J., Stellwagen, N.C.: Internal structure of the agarose gel matrix. J. Phys. Chem. 99, 4247–4251 (1995). Doi:10.1021/j100012a054

    Article  CAS  Google Scholar 

  74. Lee, K.Y., Mooney, D.J.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001). Doi:10.1021/cr000108x

    Article  CAS  PubMed  Google Scholar 

  75. Normand, V., Lootens, D.L., Amici, E., et al.: New insight into agarose gel mechanical properties. Biomacromolecules 1, 730–738 (2000). Doi:10.1021/bm005583j

    Article  CAS  PubMed  Google Scholar 

  76. Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003). Doi:10.1002/adma.200304907

    Article  CAS  Google Scholar 

  77. Darnell, M.C., Sun, J.-Y., Mehta, M., et al.: Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34, 8042–8048 (2013). Doi:10.1016/j.biomaterials.2013.06.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, J., Daubert, C.R., Foegeding, E.A.: Characterization of polyacrylamide gels as an elastic model for food gels. Rheol. Acta 44, 622–630 (2005). Doi:10.1007/s00397-005-0444-5

    Article  CAS  Google Scholar 

  79. Herrick, W.G., Nguyen, T.V., Sleiman, M., et al.: PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules 14, 2294–2304 (2013). Doi:10.1021/bm400418g

    Article  CAS  PubMed  Google Scholar 

  80. Tanaka, Y., Kuwabara, R., Na, Y.-H., et al.: Determination of fracture energy of high strength double network hydrogels. J. Phys. Chem. B 109, 11559–11562 (2005). Doi:10.1021/jp0500790

    Article  CAS  PubMed  Google Scholar 

  81. Suthar, B., Xiao, H.X., Klempner, D., Frisch, K.C.: A review of kinetic studies on the formation of interpenetrating polymer networks. Polym. Adv. Technol. 7, 221–233 (1996). Doi:10.1002/(SICI)1099-1581(199604)7:4<221:AID-PAT529>3.0.CO;2-A

    Article  CAS  Google Scholar 

  82. Teramoto, N., Saitoh, M., Kuroiwa, J., et al.: Morphology and mechanical properties of pullulan/poly(vinyl alcohol) blends crosslinked with glyoxal. J. Appl. Polym. Sci. 82, 2273–2280 (2001). Doi:10.1002/app.2075

    Article  CAS  Google Scholar 

  83. Stammen, J.A., Williams, S., Ku, D.N., Guldberg, R.E.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22, 799–806 (2001). Doi:10.1016/S0142-9612(00)00242-8

    Article  CAS  PubMed  Google Scholar 

  84. Wan, W.K., Campbell, G., Zhang, Z.F., et al.: Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J. Biomed. Mater. Res. 63, 854–861 (2002). Doi:10.1002/jbm.10333

    Article  CAS  PubMed  Google Scholar 

  85. Zhu, J.: Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31, 4639–4656 (2010). Doi:10.1016/j.biomaterials.2010.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rahimi, A., Mashak, A.: Review on rubbers in medicine: natural, silicone and polyurethane rubbers. Plast. Rubber Compos. 42, 223–230 (2013). Doi:10.1179/1743289811Y.0000000063

    Article  CAS  Google Scholar 

  87. Frogley, M., Ravich, D., Wagner, H.D.: Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647–1654 (2003). Doi:10.1016/S0266-3538(03)00066-6

    Article  CAS  Google Scholar 

  88. Lötters, J.C., Olthuis, W., Veltink, P.H., Bergveld, P.: The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145–147 (1997). Doi:10.1088/0960-1317/7/3/017

    Article  Google Scholar 

  89. Özbaş, Z., Gürdağ, G.: Swelling kinetics, mechanical properties, and release characteristics of chitosan-based semi-IPN hydrogels. J. Appl. Polym. Sci. 132, n/a–n/a (2015). Doi:10.1002/app.41886

    Google Scholar 

  90. Chen, Q., Zhu, L., Huang, L., et al.: Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 47, 2140–2148 (2014). Doi:10.1021/ma402542r

    Article  ADS  CAS  Google Scholar 

  91. Hu, J., Kurokawa, T., Nakajima, T., et al.: High fracture efficiency and stress concentration phenomenon for microgel-reinforced hydrogels based on double-network principle. Macromolecules 45, 9445–9451 (2012). Doi:10.1021/ma301933x

    Article  ADS  CAS  Google Scholar 

  92. Tsukeshiba, H., Huang, M., Na, Y.-H., et al.: Effect of polymer entanglement on the toughening of double network hydrogels. J. Phys. Chem. B 109, 16304–16309 (2005). Doi:10.1021/jp052419n

    Article  CAS  PubMed  Google Scholar 

  93. Li, Y., Wang, C., Zhang, W., et al.: Preparation and characterization of PAM/SA tough hydrogels reinforced by IPN technique based on covalent/ionic crosslinking. J. Appl. Polym. Sci. 132, n/a–n/a (2015). Doi:10.1002/app.41342

    Google Scholar 

  94. Draget, K.I., Strand, B., Hartmann, M., et al.: Ionic and acid gel formation of epimerised alginates; the effect of AlgE4. Int. J. Biol. Macromol. 27, 117–122 (2000)

    Article  CAS  PubMed  Google Scholar 

  95. LeRoux, M.A., Guilak, F., Setton, L.A.: Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 47, 46–53 (1999). Doi:10.1002/(SICI)1097-4636(199910)47:1<46:AID-JBM6>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  96. Madihally, S.V., Matthew, H.W.T.: Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133–1142 (1999). Doi:10.1016/S0142-9612(99)00011-3

    Article  CAS  PubMed  Google Scholar 

  97. Lee, J.W., Kim, S.Y., Kim, S.S., et al.: Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J. Appl. Polym. Sci. 73, 113–120 (1999). Doi:10.1002/(SICI)1097-4628(19990705)73:1<113:AID-APP13>3.0.CO;2-D

    Article  CAS  Google Scholar 

  98. Li, C., Allen, J., Alliston, T., Pruitt, L.A.: The use of polyacrylamide gels for mechanical calibration of cartilage—a combined nanoindentation and unconfined compression study. J. Mech. Behav. Biomed. Mater. 4, 1540–1547 (2011). Doi:10.1016/j.jmbbm.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peyton, S.R., Kim, P.D., Ghajar, C.M., et al.: The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29, 2597–2607 (2008). Doi:10.1016/j.biomaterials.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peyton, S.R., Raub, C.B., Keschrumrus, V.P., Putnam, A.J.: The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27, 4881–4893 (2006). Doi:10.1016/j.biomaterials.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  101. Jirapinyo, P., Kumar, N., Thompson, C.C.: Validation of an endoscopic part-task training box as a skill assessment tool. Gastrointest. Endosc. 81, 967–973 (2015). Doi:10.1016/j.gie.2014.08.007

    Article  PubMed  Google Scholar 

  102. Botden, S.M.B.I., Goossens, R., Jakimowicz, J.J.: Developing a realistic model for the training of the laparoscopic Nissen fundoplication. Simul. Healthc. J. Soc. Simul. Healthc. 5, 173–178 (2010). Doi:10.1097/SIH.0b013e3181cd09bb

    Article  Google Scholar 

  103. Mattei, T.A., Frank, C., Bailey, J., et al.: Design of a synthetic simulator for pediatric lumbar spine pathologies: laboratory investigation. J. Neurosurg. Pediatr. 12, 192–201 (2013). Doi:10.3171/2013.4.PEDS12540

    Article  PubMed  Google Scholar 

  104. Suzuki, M., Ogawa, Y., Kawano, A., et al.: Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol. (Stockh) 124, 400–402 (2004). Doi:10.1080/00016480410016478

    Article  Google Scholar 

  105. Oliveira, M., Sooraj Hussain, N., Dias, A.G., et al.: 3-D biomodelling technology for maxillofacial reconstruction. Mater. Sci. Eng. C 28, 1347–1351 (2008). Doi:10.1016/j.msec.2008.02.007

    Article  CAS  Google Scholar 

  106. Varga, S., Smith, J., Minneti, M., et al.: Central venous catheterization using a perfused human cadaveric model: application to surgical education. J. Surg. Educ. 72, 28–32 (2015). Doi:10.1016/j.jsurg.2014.07.005

    Article  PubMed  Google Scholar 

  107. Ohta, M., Handa, A., Iwata, H., et al.: Poly-vinyl alcohol hydrogel vascular models for in vitro aneurysm simulations: the key to low friction surfaces. Technol. Health Care 12, 225–233 (2004)

    PubMed  Google Scholar 

  108. Kosukegawa, H., Mamada, K., Kuroki, K., et al.: Measurements of dynamic viscoelasticity of poly (vinyl alcohol) hydrogel for the development of blood vessel biomodeling. J. Fluid Sci. Technol. 3, 533–543 (2008). Doi:10.1299/jfst.3.533

    Article  Google Scholar 

  109. Takashima, K., Tsuzuki, S., Ooike, A., et al.: Numerical analysis and experimental observation of guidewire motion in a blood vessel model. Med. Eng. Phys. 36, 1672–1683 (2014). Doi:10.1016/j.medengphy.2014.09.012

    Article  PubMed  Google Scholar 

  110. Brewin, M., Greenwald, S., Shaw, S., et al.: Characterisation of agarose gel as a tissue mimic material (TMM) for use in an anthropomorphic test object investigating the acoustic localization of coronary stenosis. J. Biomech. 45, S139 (2012). Doi:10.1016/S0021-9290(12)70140-9

    Article  Google Scholar 

  111. Shiraishi, I., Yamagishi, M., Hamaoka, K., et al.: Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardiothorac. Surg. (2009). Doi:10.1016/j.ejcts.2009.07.046

    Google Scholar 

  112. Schmitt, K.-U., Walti, M., Schälli, O., et al.: Development of a model to mimic pleural space mechanics. Technol. Health Care 21, 369–378 (2013). Doi:10.3233/THC-130737

    PubMed  Google Scholar 

  113. Thompson, C., Jirapinyo, P., Kumar, N., et al.: Development and initial validation of an endoscopic part-task training box. Endoscopy 46, 735–744 (2014). Doi:10.1055/s-0034-1365463

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bakarich, S.E., in het Panhuis, M., Beirne, S., et al.: Extrusion printing of ionic–covalent entanglement hydrogels with high toughness. J. Mater. Chem. B 1, 4939 (2013). Doi:10.1039/c3tb21159b

    Article  CAS  Google Scholar 

  115. Hong, S., Sycks, D., Chan, H.F., et al.: 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015). Doi:10.1002/adma.201501099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge John Kromer of the Miami University Libraries for his assistance with conducting the initial literature review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. Sparks .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bootsma, K., Dimbath, E., Berberich, J., Sparks, J.L. (2016). Materials Used as Tissue Phantoms in Medical Simulation. In: Studies in Mechanobiology, Tissue Engineering and Biomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2016_1

Download citation

  • DOI: https://doi.org/10.1007/8415_2016_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics