Skip to main content

Ectomycorrhizae and Their Importance in Forest Ecosystems

  • Chapter
Mycorrhizae: Sustainable Agriculture and Forestry

Abstract

Ectomycorrhizal (ECM) associations involve the most diverse category of myocrrhizae. The diversity derives from the fungal partners; more than 5,000 species of fungi, mainly Basidiomycetes, with a limited number of Ascomycetes and Zygomycetes, make the relationship very diverse. On the contrary, however, relatively few families of plants such as Fagaceae, Pinaceae, Betulaceae, and Dipterocarpaceae are involved in the ECM associations. These plants, however, are distributed over wide areas of temperate and boreal forests, and are therefore economically important. ECM fungi make associations with plants by forming a sheath (mantle) around fine root tips with hyphae that grow inward between root cells of the cortex and make Hartig net, and emanate outward through the soil, increasing the surface area to absorb nutrients and water. Thus, the mycorrhizal fungi gain photosynthates and other essential substances from the plant and in return help the plant take up water and minerals. Pine wilt disease (PWD) is a globally serious forest disease, and also shows the importance of ectomycorrhizal relationships. Pine trees planted on a mountain slope were killed by PWD, but some trees survived at the top of the slope, where mycorrhizal associations developed far better than on lower slopes. ECM associations, beside fertilization, also increase the supply of water to the pines, and elevate host resistance against disease and parasites. Moreover, inoculation of pine seedlings with ECM fungi under laboratory conditions confirmed the increase in their resistance to PWD. Pine seedlings can tolerate the adverse effects of environmental stress such as acid mist when infected with ECM fungi. These fungi can also make a significant contribution to forest ecosystems by increasing biomass and creating a network among trees through which nutrients may transported. ECM fungi also improve the growth of host plants at the seedling stage. Many pioneer plants in wastelands are facilitated in their establishment by ECM. This association has been successfully applied to reforestation programs in tropical forests by inoculating mycorrhizae on to nursery seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., Nadelhoffer, K.J., Steudler, P., and Melillo, J.M., 1989, Nitrogen saturation in northern forest ecosystems. Bioscience 39: 378-386.

    Article  Google Scholar 

  • Abuzinadah, R.A., and Read, D.J., 1986, The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol. 103: 481-493.

    Article  CAS  Google Scholar 

  • Adriaensen K., Daniël van der Lelie, Laere, A.V., Vangronsveld, J., and Colpaert, J.V., 2003, A zinc-adapted fungus protects pines from zinc stress. New Phytol. 161: 549-555.

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth, U., and Finlay, R.D., 2001, Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236: 129-138.

    Article  CAS  Google Scholar 

  • Ahonen-Jonnarth, U., vanhees, P.A.K., Lundstrom, U.S., and Finlay, R.D., 2000, Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol. 146: 557-567.

    Article  CAS  Google Scholar 

  • Akema, T., and Futai, K., 2005, Ectomycorrhizal development in a Pinus thunbergii stand in relation to location on a slope and effect on tree mortality from pine wilt disease. J. For. Res. 10: 93-99.

    Article  Google Scholar 

  • Akiyama, K., Matsuzaki, K., and Hayashi, H., 2005, Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824-827.

    Article  CAS  PubMed  Google Scholar 

  • Allen, E., Chambers, J.E., Connor, K.F., Allen, M.F., and Brown, R.W., 1987, Natural re-establishment of mycorrhizae in disturbed alpine ecosystems. Arct. Apl. Res. 19: 11-20.

    Article  Google Scholar 

  • Allen, M.F., 1988, Re-establishment of VA-mycorrhizas following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. Proc. R. Soc. Edinburgh 94B: 63-71.

    Google Scholar 

  • Allen, M.F., 1991, The Ecology of Mycorrhizae. New York, Cambridge University Press.

    Google Scholar 

  • Andersson, S., Jensen, P., and Soderstrom B., 1996, Effects of mycorrhizal colonization by Paxillus involutus on uptake of Ca and P by Picea abies and Betula pendula grown in unlimed and limed peat. New Phytol. 133: 695-704.

    Article  CAS  Google Scholar 

  • Arnebrant, K., Ek H., Finlay, R.D., and Söderstrom, B., 1993, Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124: 231-242.

    Article  Google Scholar 

  • Auþina, A., Rudawska, M., Leski, T., Skridaila, A., Edvardas RiepÅ¡as, E., and Michal Iwanski, M., 2007, Growth and mycorrhizal community structure of Pinus sylvestris seedlings following the addition of forest litter. Appl. Environ. Microbiol. 73: 4867-4873.

    Article  CAS  Google Scholar 

  • Bais, H.P., Walker, T.S., Stermitz, F.R., Hufbauer, R.A., and Vivanco, J.M., 2002, Enantiomeric-dependent phytotoxic and antimicrobial activity of (+/-)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 128: 1173-1179.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M., 2006, The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 57: 233-266.

    CAS  Google Scholar 

  • Baxter, J.W., and Dighton, J., 2001, Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol. 152: 139-149.

    Article  Google Scholar 

  • Baxter, J.W., and Dighton, J., 2005, Diversity-functioning relationships in ectomycorrhizal fungal communities. In: Dighton J., White J.F., Oudemans P., eds. The Fungal Community. Its Organization and Role in the Ecosystem. 3rd edit. Boca Raton, FL, CRC, 383-398.

    Google Scholar 

  • Becker, D.M., Bagley, S.T., and Podila, G.K., 1999, Effects of mycorrhiza-associated streptomycetes on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91: 33-40.

    Article  Google Scholar 

  • Begon, M., Harper, J.L., and Townsend, C.R., 1996, Ecology: Individuals, Populations and Communities. 3rd edit. Oxford, Blackwell Science.

    Google Scholar 

  • Bending, G.D., and Read, D.J., 1997, Lignin and soluble phenolic degradation by ecto-mycorrhizal and ericoid mycorrhizal fungi. Mycol. Res. 101: 1348-1354.

    Article  CAS  Google Scholar 

  • Bending, G.D., Poole, E.J., Whipps, J.M., and Read D.J., 2002, Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol. Ecol. 39: 219-227.

    CAS  PubMed  Google Scholar 

  • Bills, G.F., Holtzman, G.I., and Miller, O.K., 1986, Comparison of ectomycorrhizal basidiomycete communities in red spruce versus northern hardwood forests of West Virginia. Can. J. Bot. 64: 760-768.

    Article  Google Scholar 

  • Bingyun, W., and Nioh, I., 1997, Growth and water relations of P. tabulaeformis seedlings inoculated with ectomycorrhizal fungi. Microbes Environ. 12: 69-74.

    Google Scholar 

  • Bledsoe, C.S., Tennyson, K., and Lopushinsky, W., 1982, Survival and growth of ourplanted Douglas-fir seedkings inoculated with mycorrhizal fungi. Can. J. For. Res. 12: 720-723.

    Article  Google Scholar 

  • Bogeat-Triboulot, M.B., Bartoli, F., Garbaye, J., Marmeisse, R., and Tagu, D., 2004, Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant Soil 267: 213-223.

    Article  CAS  Google Scholar 

  • Bougher, N.L., Grove, T.S., and Malajczuk, N., 1990, Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytol. 114: 77-85.

    Article  CAS  Google Scholar 

  • Boyle, C.D., and Hellenbrand, K.E., 1991, Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can. J. Bot. 69: 1764-1771.

    Article  Google Scholar 

  • Branzanti, M.B., Rocca, E., and Pisi, A., 1999, Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9: 103-109.

    Google Scholar 

  • Braun-Lullemann, A., Huttermann, A., and Majcherczyk, A., 1999, Screening of ecto-mycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 53: 127-132.

    Article  CAS  Google Scholar 

  • Brown, M.T., and Wilkins, D.A., 1985, Zinc tolerance of mycorrhizal Betula. New Phytol. 99: 101-106.

    Article  CAS  Google Scholar 

  • Bruns, T.D., 1995, Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170: 63-73.

    Article  CAS  Google Scholar 

  • Bucking, H., and Heyser, W., 1994, The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil 167: 203-212.

    Article  Google Scholar 

  • Burgess, T.I., Malajczuk1, N., and Grove, T.S., 1993, The ability of 16 ectomycorrhizai fungi to increase growth and phosphorus uptake of Eucalyptus globulus LabiU. and E. diversicolor F. Muell. Plant Soil 153: 155-164.

    Article  CAS  Google Scholar 

  • Cairney, J.W.G., 1999, Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9: 125-135.

    Article  Google Scholar 

  • Cairney, J.W.G., and Chambers, S.M., 1997, Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7: 117-131.

    Article  Google Scholar 

  • Caravaca, F., Alguacil, M.M., Azcón, R., Parladé, J., Torres, P., and Roldán1, A., 2005, Establishment of two ectomycorrhizal shrub species in a semiarid site after in situ amendment with sugar beet, rock phosphate, and Aspergillus niger. Microb. Ecol. 49: 73-82.

    Article  CAS  PubMed  Google Scholar 

  • Castellano, M.A., and Trappe, J.M., 1991, Pisolithus tinctorius fails to improve plantation performance of inoculated conifers in southwestern Oregon. New For. 5: 349-358.

    Google Scholar 

  • Chakravarty, C., Peterson, R.L., and Ellis, B.E., 1991, Interaction between the ectomycorrhizal fungus Paxillus involutus, damping-off fungi and Pinus resinosa seedlings. J. Phytopathol. 132: 207-218.

    Article  Google Scholar 

  • Chakravarty, P., and Unestam, T., 1987a, Mycorrhizal fungi prevent disease in stressed pine seedlings. J. Phytopathol. 118: 335-340.

    Article  Google Scholar 

  • Chakravarty, P., and Unestam, T., 1987b, Differential influence of ectomycorrhizae on plant growth and disease resistance in Pinus sylvestris seedlings. J. Phytopathol. 120: 104-120.

    Article  Google Scholar 

  • Chakravarty, P., Khasa, D., Dancik, B., Sigler, L., Wichlacz, M., Trifonov, L.S., and Ayer, W.A., 1999, Integrated control of Fusarium damping-off in conifer seedlings. J. Plant Dis. Prot. 106: 342-352.

    Google Scholar 

  • Chalot, M., and Brun, A., 1998, Physiology of organic nitrogen acquisition by ecto-mycorrhizal fungi and ectomycorrhizas. FEMS Microbiol. Rev. 22: 21-44.

    Article  CAS  PubMed  Google Scholar 

  • Chalot, M., Kytöviitam, M., Brun, A., Finlay, R.D., and Söderström, B., 1995, Factors affecting amino acid uptake by the ectomycorrhizal fungus Paxillus involutus. Mycol. Res. 99: 1131-1138.

    Article  CAS  Google Scholar 

  • Chilvers, G.A., Douglass, P.A., and Lapeyrie, F.F., 1986, A paper-sandwich technique for rapid synthesis of ectomycorrhizas. New Phytol. 103: 597-402.

    Article  Google Scholar 

  • Clements, F.E., 1916, Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institute, Washington, DC.

    Google Scholar 

  • Coleman, M.D., and Bledsoe, C.S., 1989, Pure culture response of ectomycorrhizal fungi to imposed water stress. Can. J. Bot. 67: 29-39.

    Article  Google Scholar 

  • Coleman, M.D., Bledsoe, C.S., and Smit, B.A., 1990, Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol. 115: 275-284.

    Article  CAS  Google Scholar 

  • Colpaert, J.V., and Van assche, J.A., 1992, Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143: 201-211.

    Article  CAS  Google Scholar 

  • Colpaert, J.V., Van Tichelen, K.K., Van Assche, J.A., and Van Laere, A., 1999, Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytol. 143: 589-597.

    Article  CAS  Google Scholar 

  • Connell, J.H., and Slatyer, R.O., 1977, Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111: 1119-1144.

    Article  Google Scholar 

  • Cullings, K.W., Vogler, D.R., Parker, V.T., and Finley, S.K., 2000, Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl. Environ. Microbiol. 66: 4988-4991.

    Article  CAS  PubMed  Google Scholar 

  • Cumming, J., 1996, Phosphate-limitation physiology in ectomycorrhizal pitch pine (Pinus rigida) seedlings. Tree Physiol. 16: 977-983.

    PubMed  Google Scholar 

  • Dighton, J., and Jansen, A.E., 1991, Atmospheric pollutants and ectomycorrhizae: more questions than answers? Environ. Pollut. 73: 179-204.

    Article  CAS  PubMed  Google Scholar 

  • Dittmann, J., Heyser, W., and Bucking, H., 2002, Biodegradation of aromatic compounds by white rot and ectomycorrhizal fungal species and the accumulation of chlorinated benzoic acid in ectomycorrhizal pine seedlings. Chemosphere 49: 297-306.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R.K., Pallardy, S.G., Garrett, H.E., Cox, G.S., and Sander, I.L., 1983, Comparative water relations of container-grown and bare-root ectomycorrhizal and nonmycorrhizal Quercus velutina seedlings. Can. J. Bot. 61: 1559-1565.

    Google Scholar 

  • Donnelly, P.K., Hedge, R.S., and Fletcher, J.S., 1994, Growth of PCB degrading bacteria on compounds from photosynthetic plants. Chemosphere 28: 981-988.

    Article  Google Scholar 

  • Dosskey, M.G., Boersma, L., and Linderman, R.G., 1991, Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol. 117: 327-334.

    Article  Google Scholar 

  • Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1988a, Pine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 108: 471-476.

    Article  CAS  Google Scholar 

  • Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1988b, Interaction between the ecto-mycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can. J. Bot. 66: 558-562.

    Google Scholar 

  • Duchesne, L.C., Peterson, R.L., and Ellis, B.E., 1989, The time course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 111: 693-698.

    Article  Google Scholar 

  • Duponnois, R., and Garbaye, J., 1991, Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis effects in aseptic and in glasshouse conditions. Ann. Sci. For. 48: 239-251.

    Article  Google Scholar 

  • Duponnois, R., Founoune, H., Masse, D., and Pontanier, R., 2005, Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For. Ecol. Manage. 207: 351-362.

    Article  Google Scholar 

  • Ek, H., Sjögren, M., Arnebrant, K., and Söderström, B., 1994, Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl. Soil Ecol. 1: 155-169.

    Article  Google Scholar 

  • Eltrop, L., and Marschner, H., 1996, Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture. New Phytol. 133: 469-478.

    Article  CAS  Google Scholar 

  • Farquhar, M.L., and Peterson, R.L., 1991, Later events in suppression of Fusarium root rot of red pine seedlings by the ectomycorrhizal fungus Paxillus involutus. Can. J. Bot. 69: 1372-1383.

    Article  Google Scholar 

  • Finlay, R., and Söderström, B., 1992, Mycorrhiza and carbon flow to the soil. In: Allen M.F., ed. Mycorrhizal Functioning. New York, Chapmaan & Hall, 134-160.

    Google Scholar 

  • Finlay, R.D., and Read, D.J., 1986a, The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of carbon-14 labeled carbon between plants inter-connected by a common mycelium. New Phytol. 103: 143-156.

    Article  Google Scholar 

  • Finlay, R.D., and Read, D.J., 1986b, The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol. 103: 157-166.

    Article  Google Scholar 

  • Finlay, R.D., Ek, H., Ooham, G., and Söderström, B, 1988, Myeelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus syivestris plants infected with four difTerent ectomycorrhizal fungi. New Phytol. 110: 59-66.

    Article  Google Scholar 

  • Flores, H.E., Vivanco, J.M., and Loyola-Vargas, V.M., 1999, Radicle biochemistry: the biology of root-specific metabolism. Tren. Plant Sci. 4: 220-226.

    Article  Google Scholar 

  • Fogel, R., 1980, Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol. 86: 199-212.

    Article  CAS  Google Scholar 

  • Fogel, R., and Hunt, G., 1979, Fungal and arboreal biomass in western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can. J. For. Res. 9: 245-256.

    Article  Google Scholar 

  • Fomina, M., Charnock, J.M., Hillier, S., Alexander, I.J., and Gadd, G.M., 2006, Zinc phos-phate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb. Ecol. 52:322-333.

    Article  CAS  PubMed  Google Scholar 

  • Frey-Klett, P., Chavatte, M., Clausse, M.-L., Courrier, S., Roux, C.L., Raaijmakers, J., Martinotti, G. M., Pierrat, J.-C., and Garbaye, J., 2005, Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol. 165: 317-328.

    Article  PubMed  Google Scholar 

  • Galli, U., Meier, M., and Brunold, C., 1993, Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings [Picea abies (L,) Karst,] and its ectomycorrhizal fungus Laccaria laccata (Seop, ex Fr,) Bk, & Br.: Sulphate reduction, thiols and distribution of the heavy metal. New Phytol. 125: 837-843.

    Article  CAS  Google Scholar 

  • Galli, U., Schuepp, H., and Brunold, C., 1994, Heavy metal binding by mycorrhizal fungi. Physiol. Plant. 92: 364-368.

    Article  CAS  Google Scholar 

  • Geßler, A., Jung, K., Gasche, R., Papen, H., Heidenfelder, A., Borner, E., Metzler, B., Augustin, S., Hildebr, E., and Rennenberg, H., 2005, Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur. J. For. Res. 124: 95-111.

    Google Scholar 

  • Genney, D.R., Alexander, I.J., Killham, K., and Meharg, A.A., 2004, Degradation of the polycyclic aromatic hydrocarbon (PAH) fluorine is retarded in a Scots pine ectomycor-rhizosphere. New Phytol. 163: 641-649.

    Article  CAS  Google Scholar 

  • Gill, R.A., and Jackson, R.B., 2000, Global patterns of root turnover for terrestrial eco-systems. New Phytol. 147: 13-31.

    Article  Google Scholar 

  • Godbold, D.L., Jentschke, G., and Marschner, P., 1998, Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36: 757-762.

    Article  CAS  Google Scholar 

  • Golley, F.B., 1965, Structure and function of an old-field broomsedge community. Ecol. Monogr. 35: 113-137.

    Article  Google Scholar 

  • Gomes, E.A., de Barros, E.G., Kasuya, M.C.M., and Araújo, E.F., 2004, Molecular charac-terization of Pisolithus spp. isolates by rDNA PCR-RFLP. Mycorrhiza 8: 197-202.

    Article  Google Scholar 

  • Grayston, S.J., Wang, S., Campbell, C.D., and Edwards, A.C., 1998, Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30: 369-378.

    CAS  Google Scholar 

  • Grenon, F., Bradley, R.L., Jones, M.D., Shipley, B., and Peat, H., 2004, Soil factors controlling mineral N uptake by Picea engelmannii seedlings: the importance of gross NH4+ production rates. New Phytol. 165: 791-800.

    Article  CAS  Google Scholar 

  • Guenoune, D., Galili, S., Phillips, D.A., Volpin, H., Chet, I., Okon, Y., and Kapulnik, Y., 2001, The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci. 160: 925-932.

    Article  CAS  PubMed  Google Scholar 

  • Guillon, C., St-Arnaud, M., Hamel, C., and Jabaji-Hare, S.H., 2002, Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Can. J. Bot. 80: 305-315.

    Article  CAS  Google Scholar 

  • Harley, J.L., and McCready, C.C., 1952, The uptake of phosphatase by excised mycorrhizal roots of the beech. III. The effect of the fungal sheath on the availability of phosphate to the core. New Phytol. 51: 342-348.

    Article  Google Scholar 

  • Harrison, A.F., Stevens, P.A., Dighton, J., Quarmby, C., Dickinson, A.L., Jones, H.E., and Howard, D.M., 1995, The critical load of nitrogen for Sitka spruce forests on stagnopodsols in Wales: Role of nutrient limitations. For. Ecol. Manag. 76: 139-148.

    Article  Google Scholar 

  • Hartley-Whitaker, J., Cairney, J.W.G., and Meharg, A.A., 2000, Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil 218: 31-42.

    Article  CAS  Google Scholar 

  • He, X.H., Critchley, C., Ng, H., and Bledsoe, C.S. 2004, Reciprocal N (15NH4 + or 15NO3 í) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163: 629-640.

    Article  Google Scholar 

  • Hentschel, E., Jentschke, G., Marschner, P., Schlegel, H., and Godbold, D.L., 1993, The effect of Pxillus involutus on the aluminium sensitivity of Norway spruce seedlings. Tree Physiol. 12: 379-390.

    CAS  PubMed  Google Scholar 

  • Heslin, M.C., and Douglas, G.C., 1986, Effects of ectomycorrhizal fungi on growth and development of poplar derived from tissue culture. Sci. Horti. 30: 143-149.

    Article  Google Scholar 

  • Hobbie, E.A., 2006, Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 653-569.

    Google Scholar 

  • Högberg, H., 1989, Growth and nitrogen inflow rates in mycorrhizal and non-mycorrhizal seedlings of Pinus sylvestris. For. Ecol. Manag. 28: 7-17.

    Article  Google Scholar 

  • Horan, D.P., and Chilvers, G.A., 1990, Chemotropism- the key to ectomycorrhizal formation? New Phytol. 116: 297-301.

    Article  CAS  Google Scholar 

  • Horton, T.R., and Bruns, T.D., 1998, Multiple host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and bishop pine (Pinus muricata D. Don). New Phytol. 139: 331-339.

    Article  Google Scholar 

  • Horton, T.R., Bruns, T.D., and Parker, V.T., 1999, Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77: 93-102.

    Article  Google Scholar 

  • Hung, L.L., and Trappe, J.M., 1983, Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75: 234-241.

    Article  Google Scholar 

  • Hwang, S.F., Chakravarty, P., and Chang, K.F., 1995, The effect of two ectomycorrhizal fungi, Paxillus involutus and Suillus tomentosus, and of Bacillus subtilis on Fusarium damping-off in jack pine seedlings. Phytoprotection 76: 57-66.

    Google Scholar 

  • Jentschke, G., Godbold, D.L., and Huttermann, A., 1991a, Culture of mycorrhizal tree seedlings under controlled conditions: effects of nitrogen and aluminium. Physiol. Plant. 81: 408-416.

    Article  CAS  Google Scholar 

  • Jentschke, G., Schlegel, H., and Godbold, D.L., 1991b, The effect of aluminium on uptake and distribution of magnesium and calcium in roots of mycorrhizal Norway spruce seedlings. Physiol. Plant. 82: 266-270.

    Article  CAS  Google Scholar 

  • Johnson, N.C., Graham, J.H., and Smith, F.A., 1997, Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135: 575-585.

    Article  Google Scholar 

  • Joner, E.J., Leyval, C., and Colpaert, J.V., 2006, Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ. Poll. 142: 34-38.

    Article  CAS  Google Scholar 

  • Jones, M.D., and Hutchinson, T.C., 1986, The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol. 102: 429-442.

    Article  CAS  Google Scholar 

  • Jones, M.D., Durall, D.M., and Tinker, P.B., 1991, Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytol. 119: 99-106.

    Article  CAS  Google Scholar 

  • Jonsson, L., 1998, Community structure of ectomycorrhizal fungi in Swedish boreal forests, Ph.D. Thesis, Swedish University of Agricultural Sciences.

    Google Scholar 

  • Jonsson, L., Dahlberg, A., Nilsson, M.C., KÃ¥rén, O., and Zackrisson, O., 1999, Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol. 142: 151-162.

    Article  Google Scholar 

  • Jonsson, L.M., Nilsson, M., Wardle, D.A., and Zackrisson, O., 2001, Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93: 353-364.

    Article  Google Scholar 

  • Jumpponen, A., and Egerton-Warburton, L.M., 2005, Mycorrhizal fungi in successional environments: A community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J., White J.F., Oudemans P., eds. The Fungal Community. Its Organization and Role in the Ecosystem. 3rd edit. Boca Raton, FL, CRC, 139-168.

    Google Scholar 

  • KÃ¥rén, O., and Nylund, J.-E., 1996, Effects of N-free fertilization on ectomycorrhiza community structure in Norway spruce stands in Southern Sweden. Plant Soil 181: 295-305.

    Article  Google Scholar 

  • KÃ¥rén, O., and Nylund, J.-E., 1997, Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can. J. Bot. 75: 1628-1642.

    Article  Google Scholar 

  • Kennedy, P.G., and Peay, K.G., 2007, Different soil moisture conditions change the outcome of the ectomycorrhizal symbiosis between Rhizopogon species and Pinus muricata. Plant Soil 291: 155-165.

    Article  CAS  Google Scholar 

  • Kennedy, P.G., Izzo, A.D., and Bruns, T.D., 2003, There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91: 1071-1080.

    Article  Google Scholar 

  • Kikuchi, J., Tsuno, N., and Futai, K., 1991, The effect of mycorrhizae as a resistance factor of pine trees to the pine wood nematode. J. Jpn. For. Soc. 73: 216-218.

    Google Scholar 

  • Koide, R.T., 1991, Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117: 365-386.

    Article  CAS  Google Scholar 

  • Koide, R.T., Courty, P.E., and Garbaye, J., 2007, Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytol. 174: 240-243.

    Article  PubMed  Google Scholar 

  • Krupa, S., and Fries, N., 1971, Studies on ectomycorrhizae of pine. I. Production of volatile organic compounds. Can. J. Bot. 49: 1425-1431.

    Article  CAS  Google Scholar 

  • Lamhamedi, M.S., Fortin, J.A., Kope, H. H., and Kropp, B. R., 1990, Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol. 115: 689-697.

    Article  Google Scholar 

  • Lamhamedi, M.S., Bernier, P.Y., and Fortin, J.A., 1992, Growth, nutrition and response to water stress of Pinus pinaster inoculated with ten dikaryotic strains of Pisolithus sp. Tree Physiol. 10: 153-167.

    PubMed  Google Scholar 

  • Landeweert, R., Hoffland, E., Finlay, R.D., Kuyper, T.W., and van Breemen, N., 2001, Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Tren. Ecol. Evol. 16: 248-254.

    Article  Google Scholar 

  • Le Tacon, F., Garbaye, J., and Carr, G., 1987, The use of mycorrhizas in temperate and tropical forests. Symbiosis 3: 179-206.

    Google Scholar 

  • Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., and Read, D., 2004, Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82: 1016-1045.

    Article  Google Scholar 

  • Lewis, J.D., Licitra, J., Tuininga, A.R., Sirulnik, A., Turner, G.D., and Johnson, J., 2004, Oak seedling growth and ectomycorrhizal colonization are less in eastern hemlock stands infested with hemlock woolly adelgid than in adjacent oak stands. Tree Physiol. 28: 629-636.

    Google Scholar 

  • Lilja, A., Lija, S., Kukela, T., and Rikala, R. 1997, Nursery practices and management of fungal diseases in forest nurseries in Finland. A Rev. Silva Fennica 31: 79-100.

    Google Scholar 

  • Maehara, N., Kikuchi, J., and Futai K., 1993, Mycorrhizae of Japanese black pine (Pinus thunbergii): protection of seedlings from acid mist and effect of acid mist on mycorrhiza formation. Can. J. Bot. 71: 1562-1567.

    Article  Google Scholar 

  • Mahmood, S., Finlay, R.D., Fransson, A.-M., and Wallander, H., 2003, Effects of hardened wood ash on microbial activity, plant growth and nutrient uptake by ectomycorrhizal spruce seedlings. FEMS Microbiol. Ecol. 43: 121-131.

    Article  CAS  PubMed  Google Scholar 

  • Maier A., Riedlinger J., Fiedler H.P., and Hampp R., 2004, Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol. Prog. 3: 129-136.

    Article  Google Scholar 

  • Marschner, H., and Dell, B., 1994, Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159: 89-102.

    CAS  Google Scholar 

  • Martin, F., Ramstedt, M., and Soederhaell, K., 1987, Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas. Biochimie 69: 569-581.

    Article  CAS  PubMed  Google Scholar 

  • Marx, D.H., 1969, The influence of ectotrophic ectomycorrhizal fungi on the resistance to pathogenic infections. I. Antagonism of mycorrhizal fungi to pathogenic fungi and soil bacteria. Phytopathology 59: 153-163.

    Google Scholar 

  • Marx, D.H., Ruehle, J.L., Kenney, D.S., Cordell, C.E., Riffle, J.W., Molina, R.J., Pawuk, W. H., Navratil, S., Tinus, R.W., Goodwin, O.C., 1982, Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of Ectomycorrhizae on container-grown tree seedlings. For. Sci. 28: 373-400.

    Google Scholar 

  • Matsuda, Y., and Hijii, N., 2004, Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Can. J. Bot. 82: 822-829.

    Article  Google Scholar 

  • McAfee, B.J., and Fortin, J.A., 1986, Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can. J. Bot. 64: 848-852.

    Article  Google Scholar 

  • Meharg, A.A., and Cairney, W.G., 2000, Ectomycorrhizas-extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 32: 1475-1484.

    CAS  Google Scholar 

  • Meharg, A.A., Cairney, W.G., and Maguire, N., 1997, Mineralization of 2,4-Dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34: 2495-2504.

    Article  CAS  Google Scholar 

  • Melin, E., 1963, Some effects of forest tree roots on mycorrhizal Basidiomycetes. In: Mosse, B., and Nutman, P.S., eds. Symbiotic Associations. Cambridge, Cambridge University Press, 124-145.

    Google Scholar 

  • Mexal, J., and Reid, C.P.P., 1973, The growth of selected mycorrhizal fungi in response to induced water stress. Can. J. Bot. 51: 1579-1588.

    Article  Google Scholar 

  • Mohren, G.M.J., Van den Burg, J., and Burger, F.W., 1986, Phosphorus deficiency induced by nitrogen input in Douglas fir in the Netherlands. Plant Soil 95: 191-200.

    Article  CAS  Google Scholar 

  • Molina, R., and Trappe, J.M., 1982, Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. For. Sci. 28: 423-458.

    Google Scholar 

  • Molina, R., and Trappe, J.M., 1994, Biology of the ectomycorrhizal genus, Rhizopogon. New Phytol. 126: 653-675.

    Article  Google Scholar 

  • Morin, C., Samson, J., and Dessureault, M., 1999, Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Can. J. Bot. 77: 169-174.

    Article  Google Scholar 

  • Morte, A., Díaz, G., Rodríguez, P., Alarcón, J.J., and Sánchez-Blanco, M.J., 2001, Growth and water relations in mycorrhizal and nonmycorrhizal Pinus halepensis plants in res-ponse to drought. Biol. Plant. 44: 263-267.

    Article  Google Scholar 

  • Nara, K., 2006a, Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169: 169-178.

    Article  CAS  PubMed  Google Scholar 

  • Nara, K., 2006b, Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol. 171: 187-198.

    Article  PubMed  Google Scholar 

  • Nara, K., and Hogetsu, T., 2004, Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85: 1700-1707.

    Article  Google Scholar 

  • Nara, K., Nakaya, H., and Hogetsu, T., 2003, Ectomycorrhizal sporocarps succession and production during early primary succession on Mount Fuji. New Phytol. 158: 193-206.

    Google Scholar 

  • Nardini, A., Salleo, S., Tyree, M.T., and Vertovec, M., 2000, Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings Ann. For. Sci. 57: 305-312.

    Google Scholar 

  • Newman, E.I., 1988, Mycorrhizal links between plants: their functioning and ecological significance. Adv. Ecol. Res. 18: 243-270.

    Article  Google Scholar 

  • Newton, A.C., and Pigott, C.D., 1990, Mineral nutrition and mycorrhizal infection of seedling oak and birch. New Phytol. 117: 37-44.

    Article  Google Scholar 

  • Odum, E.P., 1960, Organic production and turnover in old field succesion. Ecology 41: 34-49.

    Article  Google Scholar 

  • Parke, E.L., Linderman R.G. and Black, C.H., 1983, The role of ectomycorrhizas in drought tolerance of douglas-fir seedlings. New Phytol. 95: 83-95.

    Article  Google Scholar 

  • Pedersen, E.A., and Chakravarty, P., 1999, Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. For. Pathol. 29: 123-134.

    Google Scholar 

  • Pedersen, E.A., Reddy, M.S., and Chakravarty, P., 1999, Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white spruce seedlings. Eur. J. For. Pathol. 29: 123-134.

    Article  Google Scholar 

  • Peters, N.K., Frost, J.W., and Long, S.R., 1986, A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977-980.

    Article  CAS  PubMed  Google Scholar 

  • Quoreshi, A.M., and Timmer, V.R., 2000, Early outplanting performance of nutrient-loaded containerized black spruce seedlings inoculated with Laccaria bicolor: a bioassay study. Can. J. For. Res. 30:744-752.

    Article  Google Scholar 

  • Rambelli, A., 1973, The rhizosphere of mycorrhiza. In: Marks G.C., and Kozlowski T.T., eds., Ectomycorrhizae Their Ecology and Physiology. NewYork, Academic Press, 299-349.

    Google Scholar 

  • Rasanayagam, S., and Jeffries, P., 1992, Production of acid is responsible for antibiosis by some ectomycorrhizal fungi. Mycol. Res. 96: 971-976.

    Article  CAS  Google Scholar 

  • Read, D.J., 1989, Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc. R. Soc. Edinburgh 96B: 89-110.

    Google Scholar 

  • Read, D.J., 1992, The mycorrhizal fungal community with special references to nutrient mobilization. In: Carrol G.C., and Wicklow D.T., eds. The Fungal Community: Its Organi-zation and Role in the Ecosystem. New York, Marcel Dekker, 631-654.

    Google Scholar 

  • Read, D.J., 1997, Mycorrhizal fungi - the ties that bind. Nature 388: 517-518.

    Article  CAS  Google Scholar 

  • Redecker, D., Szaro, T.M., Bowman, R.J., and Bruns, T.D., 2001, Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol. Ecol. 10: 1025-1034.

    Article  CAS  PubMed  Google Scholar 

  • Repáþ, I., 2007, Ectomycorrhiza formation and growth of Picea abies seedlings inoculated with alginate-bead fungal inoculum in peat and bark compost substrates. Forestry: doi:10.1093/forestry/cpm036

    Google Scholar 

  • Riedlinger, J., Schrey, S.D., Tarkka, M.T., Hampp, R., Kapur, M., and Fiedler, H.P., 2006, Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. App. Environ. Microbiol. 72: 3550-3557.

    Article  CAS  Google Scholar 

  • Rousseau, J.V.D., Sylvia, D.M., and Fox, A.J., 1994, Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 128: 639-644.

    Article  Google Scholar 

  • Ruotsalainen, A.L., Tuomi, J., and Väre, H., 2002, A model for optimal mycorrhizal colo-nization along altitudinal gradients. Silva Fennica 36: 681-694.

    Google Scholar 

  • Sampangi, R., Perrin, R., and Le Tacon, F., 1986, Disease suppression and growth promotion of Norway spruce and Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria laccata in forest nurseries. In: Gianinazzi-Pearson V., and Gianinazzi S., eds. Physio-logical and Genetical Aspects of Mycorrhizae. 1st Europ. Symp. Mycorrhizae. Institut National de la Recherche Agronomique, Paris, 799-806.

    Google Scholar 

  • Samson, J., and Fortin, J.A., 1986, Ectomycorrhizal fungi of Larix laricina and the inter-specific and intraspecific variation in response to temperature. Can. J. Bot. 64: 3020-3028.

    Article  Google Scholar 

  • Sarand, I., Timonen, S., Nurmiaho-Lassila, E., Koivula, T., Haahtela, K., Romantschuk, M., and Sen, R., 1998, Microbial biofilms and catabolic plasmid harbouring degradatine fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petleum contaminated soil. FEMS Microbiol. Ecol. 27: 115-126.

    Article  CAS  Google Scholar 

  • Sarand, I., Timonen, S., Koivula, T., Peltola, R., Haahtela, K., Sen, R., and Romantschuk, M., 1999, Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J. Appl. Micro-biol. 86: 817-826.

    Article  CAS  Google Scholar 

  • Satomura, T., Nakatsubo, T., and Horikoshi, T., 2003, Estimation of the biomass of fine roots and mycorrhizal fungi: a case study in a Japanese red pine (Pinus densiflora) stand. J. For. Res. 8: 221-225.

    Article  Google Scholar 

  • Satomura, T., Hashimoto, Y., Kinoshita, A., and Horikoshi, T., 2006a, Methods to study the role of ectomycorrhizal fungi in forest carbon cycling 1: introduction to the direct methods to quantify the fungal content in ectomycorrhizal fine roots. Root Res. 15: 119-124.

    Article  Google Scholar 

  • Satomura, T., Hashimoto, Y., Kinoshita, A., and Horikoshi, T., 2006b, Methods to study the role of ectomycorrhizal fungi in forest carbon cycling 2: Ergosterol analysis method to quantify the fungal content in ectomycorrhizal fine root. Root Res. 15: 125-154.

    Google Scholar 

  • Schelkle, M., and Peterson, R.L., 1996, Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6: 481-485.

    Article  Google Scholar 

  • Schneider, B.U., Meyer, J., Schulze, E.-D., and Zech, W., 1989, Root and mycorrhizal deve-lopment in healthy and declining Norway spruce stand. In: Schulze E.-D., Lange O.L., and Oren R., eds. Forest Decline. Berlin, Springer, 370-391.

    Google Scholar 

  • Schrey, S.D., Schellhammer, M., Ecke, M., Hampp, R., and Tarkka, M.T., 2005, Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168: 205-216.

    Article  CAS  PubMed  Google Scholar 

  • Sell, J., Kayser, A., Schulin, R., and Brunner, I., 2005, Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277: 245-253.

    Article  CAS  Google Scholar 

  • Sen, R., 2001, Multitrophic interactions between a Rhizoctonia sp., and mycorrhizal fungi affect Scots pine seedling performance in nursery soil. New Phytol. 152: 543-553.

    Article  CAS  Google Scholar 

  • Simard, S.W., and Durall, D.M., 2004, Mycorrhizal networks: a review of their extent, function, and importance. Can. J. Bot. 82: 1140-1165.

    Article  CAS  Google Scholar 

  • Smith, S.E., and Read, D.J., 1997, Mycorrhizal Symbiosis. 2nd edit. New York, Academic Press.

    Google Scholar 

  • StankeviþienÆ¡, D., and PeþiulytÆ¡, D., 2004, Functioning of ectomycorrhizae and soil micro-fungi in deciduous forests situated along a pollution gradient next to a fertilizer factory. Pol. J. Environ. Stud. 13: 715-721.

    Google Scholar 

  • Stintzi, A., and Browse, J., 2000, The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97: 10625-10630.

    Article  CAS  PubMed  Google Scholar 

  • Stotz, H.U., Bishop, J.G., Bergmann, C.W., Koch, M., Albersheim, P., Darvill, A.G., and Labavitch, J.M., 2000, Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol. Mol. Plant Pathol. 56: 117-130.

    Article  CAS  Google Scholar 

  • Strobel, N.E., and Sinclair, W.A., 1991a, Role of flavanolic wall infusions in the resistance induced by Laccaria bicolor to Fusarium oxysporum in primary roots of Douglas-fir. Phytopathology 81: 420-425.

    Article  CAS  Google Scholar 

  • Strobel, N.E., and Sinclair, W.A., 1991b, Influence of temperature and pathogen aggressive-ness on biological control of Fusarium root rot by Laccaria bicolor in Douglas-fir. Phytopathology 81: 415-420.

    Article  Google Scholar 

  • Sun, Y., and Fries, N., 1992, The effect of tree-root exudates on the growth rate of ectomycorrhizal and saprotrophic fungi. Mycorrhiza 1: 63-69.

    Article  Google Scholar 

  • Svenson, S.E., Davies, F.T. and Meier, C.E., 1991, Ectomycorrhizae and drought acclimation influence water relations and growth of Loblolly Pine. Hort Sci. HJHSAR 26: 1406-1409.

    Google Scholar 

  • Sylvia, D.M., 1983, Role of Laccaria laccata in protecting primary roots of Douglas-fir from root rot. Plant Soil 71: 299-302.

    Article  Google Scholar 

  • Tam P.C.F., 1995, Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5: 181-187.

    Article  CAS  Google Scholar 

  • Tammi, H., Timonen, S., and Sen, R., 2001, Spatio-temporal colonization of Scots pine roots by introduced and indigenous ectomycorrhizal fungi in forest humus and nursery Sphagnum peat microcosms. Can. J. For. Res. 35: 1-12.

    Google Scholar 

  • Taniguchi, T., Kanzaki, N., Tamai, S., Yamanaka, N., and Futai, K., 2007, Does ecto-mycorrhizal community structure vary along a Japanese black pine (Pinus thunbergii) to black locust (Robinia pseudoacacia) gradient? New Phytol. 173: 322-334.

    Article  PubMed  Google Scholar 

  • Taniguchi, T., Kataoka, R., and Futai, K., 2008, Plant growth and nutrition in pine (Pinus thunbergii) seedlings and dehydrogenase and phosphatase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conditions. Soil Biol. Biochem. 40: 1235-1243.

    Article  CAS  Google Scholar 

  • Taylor, A.F.S., Gebauer, G., and Read, D.J., 2004, Uptake of nitrogen and carbon from double-labelled (15 N and 13 C) glycine by mycorrhizal pine seedlings. New Phytol. 164: 383-388.

    Article  CAS  Google Scholar 

  • Tedersoo, L., Pellet, P., Urmas, Kõljalg, U., and Selosse, M.A., 2007, Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151: 206-217.

    Google Scholar 

  • Teste, F.P., Karst, J., Jones, M.D., Simard, S.W., and Durall, D.M., 2006, Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Mycorrhiza 17: 51-65. Ectomycorrhizae and their Importance285

    Google Scholar 

  • Tibbett, M., Sanders, F.E., and Cairney, J.W.G., 1998, The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol. Res. 102: 129-135.

    Article  CAS  Google Scholar 

  • Tilman, D., 1985, The resource-ratio hypothesis of plant succession. Am. Nat. 125: 827-852.

    Article  Google Scholar 

  • Tilman, D., 1987, Secondary succession and the pattern of plant dominance along experi-mental nitrogen gradients. Ecol. Monogr. 57: 189-214.

    Article  Google Scholar 

  • Tommerup, I.C., Kuek, C., and Malajczuk, N., 1987, Ectomycorrhizal inoculum production and utilization in Australia. Proc. 7th. Amer. Conf. Mycorrhizae, Gainesville, Florida, pp. 293-295.

    Google Scholar 

  • Turnau, K., Kottke, I., Dexheimer, J., and Botton, B., 1994, Element distribution in mycelium of Pisolithus arrhizus treated with cadmium dust. Ann. Bot. 74: 137-142.

    Article  CAS  Google Scholar 

  • Turnau, K., Kottke, I., and Drexheimer, J., 1996, Toxic elements filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol. Res. 100: 16-22.

    Article  CAS  Google Scholar 

  • van der Heijden, M. G. A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T. A., Wiemken, A., and Sanders, I.R., 1998, Mycorrhizal fungal diversity deter-mines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72.

    Article  CAS  Google Scholar 

  • Vogt K.A., Grier C.C., Edmonds R.L., and Meier C.E., 1982, Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis [Dougl.] Forbes ecosystems in western Washington. Ecology 63: 370-380.

    Article  Google Scholar 

  • Vogt, K.A., Vogt, D.J., and Bloomfield, J., 1998, Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200: 71-89.

    Article  CAS  Google Scholar 

  • Walker, R.F., 2001, Growth and nutritional responses of containerized sugar and Jeffrey pine seedlings to controlled release fertilization and induced mycorrhization. For. Ecol. Manag. 149: 163-179.

    Article  Google Scholar 

  • Walker, T.S., Bais, H.P., Grotewold, E., and Vivanco, J.M., 2003, Root exudation and rhizosphere biology. Plant Physiol. 132: 44-51.

    Article  CAS  PubMed  Google Scholar 

  • Wallander, H., 2000, Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218: 249-256.

    Article  CAS  Google Scholar 

  • Wallander, H., Nilsson, L.O., Hagerberg, D., and Bååth, E., 2001, Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol. 151: 753-760.

    Article  CAS  Google Scholar 

  • Wallander, H., Göransson, H., and Rosengren, U., 2004, Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139: 89-97.

    Article  PubMed  Google Scholar 

  • Wallander, H., Fossum, A., Rosengren, U., and Jones, H., 2005, Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment. Mycorrhiza 15: 143-148.

    Article  PubMed  Google Scholar 

  • Whipps, J.M., 2004, Prospects and limitations for mycorrhizals in biocontrol of root pathogens. Can. J. Bot. 82: 1198-1227.

    Article  Google Scholar 

  • Wu, B., Nara, K., and Hogetsu, T., 2005, Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol. 165: 285-293.

    Article  CAS  PubMed  Google Scholar 

  • Wu T., Sharda J.N., and Koide R.T., 2003, Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine (Pinus resinosa). New Phytol. 159: 131-139.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Futai, K., Taniguchi, T., Kataoka, R. (2008). Ectomycorrhizae and Their Importance in Forest Ecosystems. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_11

Download citation

Publish with us

Policies and ethics