Skip to main content

Sedimentation in Coal-Water Slurry Pipelining

  • Chapter
Complex Flows in Industrial Processes
  • 382 Accesses

Abstract

In this chapter we present an overview of recent investigations on the problem of sedimentation related to the pipelining of a coal-water slurry. The two main aspects of the problem are the determination of the sedimentation velocity and the understanding and modeling of the dynamics of the sedimentation bed that accumulates on the bottom of the pipe. The analysis is carried out using a combination of suggestions dictated by experimental evidence and suitable mathematical techniques. The result is a model that appears to be both easily manageable and flexible. Predictions of the model are compared with experiments finding a remarkable agreement with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, A., Mashelkar, R.A., and Ulbrecht, J., Flow of inelastic and viscoelastic fluids past a sphere I. Drag coefficient in creeping and boundaty-layer flows, Rheol. Acta, 15, 454–470 (1976).

    Article  Google Scholar 

  2. Adachi, K., and Yoshioka, N., On creeping flow of a viscoplastic fluid past a circular cylinder, Chem. Eng. Sci., 28, 215–26 (1973).

    Article  Google Scholar 

  3. Andres, V.T., Equilibrium and motion of a sphere in a viscoplastic fluid, Soviet Phis. Doklady, 5, 723–26 (1960).

    MathSciNet  MATH  Google Scholar 

  4. Ansley, R.W., and Smith, T.N., Motion of spherical particles in a Bingham plastic, AIChE J., 13, 1193–6 (1967).

    Article  Google Scholar 

  5. Astarita, G., The engineering reality of yield stress, J. Rheol., 34, 275–7 (1990).

    Article  Google Scholar 

  6. Beris, A. N., Tsamopoulos, J.A., Armstrong, R.C., and Brown, R.A., Creeping motion of a sphere through a Bingham plastic, J. Fluid Mech., 158, 219–44 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertero, M., De Mol, C., and Pike, E.R., Linear inverse problems with discrete data. 1: General formulation and singular system analysis, Inverse Problems, 1, 301–30 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertero, M., De Mol, C., and Pike, E.R., Linear inverse problems with discrete data. 2: Stability and regularization, Inverse Problems 14, 573–94 (1988).

    Article  Google Scholar 

  9. Brenner, H., Dynamics of particles in a viscous fluid, Chem. Eng. Sci., 17, 435–9 (1962).

    Article  Google Scholar 

  10. Brookes, G.F., and Whitmore, R.L., Drag forces in Bingham plastics, Rheol. Acta, 8, 472–80 (1969).

    Article  Google Scholar 

  11. Carniani, E., Ercolani, D., Meli, S., Pellegrini, L., and Primicerio, M., Shear degradation of concentrated CWS in pipeline flow, Proc.l3th Int. Conf. Slurry Technology, Denver (1988).

    Google Scholar 

  12. Chhabra, R.P., Steady non-Newtonian flow about a rigid sphere, Encyclopedia of Fluid Mechanics, 1, 983–1033 (1986).

    Google Scholar 

  13. Chhabra, R.P., Bubbles, Drops and Particles in Non-Newtonian Fluids, CRC Press, London (1992).

    Google Scholar 

  14. De Angelis, E., Modelli stazionari e non per fluidi di Bingham in viscosimetro e in condotta Ph.D. Thesis, University of Florence (1996).

    Google Scholar 

  15. De Angelis, E., Fasano, A., Primicerio, M., Rosso, F., Carniani, E., and Ercolani, D., Modelling sedimentation in CWS, in Hydrotransport 12: Proc. of the 12th Intl Conf. on Slurries Handling and Pipeline Transport, edited by C.A. Shook, MEP Publ. (1993), 399–414.

    Google Scholar 

  16. De Angelis, E., and Mancini, A., A model for the dynamics of sediments in a pipe, Mathematical and Computer Modelling, 25, 65–78 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. De Angelis, E., and Rosso, F., A functional approach to the problem of evaluating the velocity for a population of particles settling in a liquid, Proc. of the 6th European Consortium for Mathematics in Industry(1993), edited by A. Fasano and M. Primicerio, B.G. Teubner (1994), 191–8.

    Google Scholar 

  18. De Angelis, E., Fasano, A., Primicerio, M., Rosso, F., Carniani, E., and Ercolani, D., Sedimentation bed dynamics for fluids with yield stress in a pipe, Proc. of the 4 th Int. Conf. “Fluidodinamica Multifase nell’Impiantistica Industriale” (1994), 85–93.

    Google Scholar 

  19. Dedegil, M.Y., Drag coefficient and settiing velocity of particles in non-Newtonian suspensions, Trans. ASME, 109, 319–23 (1987).

    Article  Google Scholar 

  20. Fasano, A., A mathematical model for the dynamics of sediments in a pipeline, in Progress in Industrial Mathematics at ECMI 94, edited by H. Neunzert, Weley and Teubner Publ. (1996), 241–9.

    Chapter  Google Scholar 

  21. Fasano, A., and Primicerio, M. Modelling the rheology of a coal-water slurry, Proc. of the 4th Europ. Consortium on Mathematics in Industry, edited by H.J. Wacker and W. Zulhener, B.G. Teubner and Kluwer Academic Publ. (1991), 269–74.

    Chapter  Google Scholar 

  22. Fasano, A., and Primicerio, M., New results on some classical parabolic free boundary problems, Quart. Appl. Math., 38, 439–60 (1990).

    MathSciNet  Google Scholar 

  23. Fasano, A., Manni, E., and Primicerio, M., Modelling the dynamics of fluidizing agents in coal—water slurries, Proc. of the International Symposium on Nonlinear Problems in Engineering and Science, edited by S. Xiao and X. Hu, Science Press, Beijing (1992), 64–71.

    Google Scholar 

  24. Fasano, A., Primicerio, M., and Rosso, F., On quasi-steady axisymmetric flows of Bingham type with stress-induced degradation, Computing, 49, 213–37 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  25. Galdi, G. P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I: Linearized Stationary Problems,Springer Tracts in Natural Philosophy, 38, Springer Verlag (1994).

    Google Scholar 

  26. Gianni, R., Pezza, L., and Rosso, F., The constant flow rate problem for fluids with increasing yield stress in a pipe, Theoretical and Computational Fluid Mechanics, 7, 6, 477–93 (1995).

    Article  Google Scholar 

  27. Leal, L.G., Particle motions in a viscous fluid, Ann. Rev. Fluid Mech., 12, 435–76 (1980).

    Article  MathSciNet  Google Scholar 

  28. Mancini, A., Evoluzione di profili di sedimentazione nel trasporto di sospensioni concentrate in condotta, Thesis Dept. Math. “U.Dini,” University of Florence (1995).

    Google Scholar 

  29. Mancini, A., Evolution of sediment profiles in the transport of coal water slurries through a pipeline, in Progress in Industrial Mathematics at ECMI 96, edited by M. Brans, M. Bendsoe, and M.P. Sorensen, Teubner, Stuttgart (1997), 441–9.

    Google Scholar 

  30. Oseen, C.W., Über die Stokessche Formel und über eine Verwandte Aufgabe in der Hydrodynamik, Ark. Mat. Astron. Fys., 6, 1–20 (1910).

    Google Scholar 

  31. Oseen, C.W. Neuene Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellshalt, Leipzig (1927).

    Google Scholar 

  32. Primicerio, M., Dynamics of slurries, Proc. of the 2nd European Consortium on Mathematics in Industry 1987, edited by H. Neunzert, B.G. Teubner (1988), 121–34.

    Google Scholar 

  33. Parrini, S., Moto stazionario di un fluido di Bingham in una condotta con sezione trasversale non circolare Thesis Dept. Math. “U. Dini,”University of Florence (1995).

    Google Scholar 

  34. Rosso, F., On two inverse problems in hydrodynamics of non-Newtonian fluids, in Recent Advances in Mechanics of Structured Continua--1993, edited by M. Massoudi and K.R. Rajagopal, 160, ASME Publ., New York (1993) 95–103.

    Google Scholar 

  35. Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cam. Phil. Soc., 9, 8–27 (1851).

    Google Scholar 

  36. Terenzi, A., Carniani, E., Donati, E., and Ercolani, D., Problems on nonlinear fluid dynamics in industrial plants, this volume.

    Google Scholar 

  37. Thomas, A.D., Settling of particles in a horizontally sheared Bingham plastic, 1st Nat. Conf. on Rheology, Melbourne, 89–92 (1979).

    Google Scholar 

  38. Tyabin, N.V. Some questions on the theory of viscoplastic flow of disperse systems, Colloid J. U.S.S.R., 15, 153–9 (1953).

    Google Scholar 

  39. Turian, R.M., Hsu, F.L., Avramidis, K.S., Sung, D.J., and Allendorfer, R.K., Settling and rheology of suspensions of narrow-sized coal particles, AIChE J., 38, 969–87 (1992).

    Article  Google Scholar 

  40. Valentik, L., and Whitmore, R.L., The terminal velocity of spheres in Bingham plastics, Brit. J. Appl. Phys., 16, 1197–1203 (1965).

    Article  Google Scholar 

  41. Wildemuth, C.R., and Williams, M.C., Viscosity of suspensions modeled with a shear-dependent maximum packing fraction, Rheol. Acta, 23, 627–35 (1984).

    Article  Google Scholar 

  42. Wilson, K.C., Hydrotransport 1 to 12, better by the dozen, opening address, Hydrotransport 12, Int. Conf. on Slurry Handling and Pipeline Transport, edited by C.A. Shook, BHR Group Conference Series, Publication No. 6, Mechanical Engineering Publication Ltd., London (1993).

    Google Scholar 

  43. Yoshioka, N., Adachi, K., and Ishimura, H., On creeping flow of a viscoplastic fluid past a sphere, Kagaku Kogaku, 10, 1144–52 (1971) (in Japanese).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosso, F. (2000). Sedimentation in Coal-Water Slurry Pipelining. In: Fasano, A. (eds) Complex Flows in Industrial Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1348-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1348-2_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7106-2

  • Online ISBN: 978-1-4612-1348-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics