Skip to main content

Alimentary Canal: Anatomy, Regulation of Feeding, and Motility

  • Chapter
Avian Physiology

Abstract

As do other avian systems, the digestive system shows adaptations for flight (Farner, 1960). In the mouth area, the teeth and heavy jaw bones and muscles of reptiles and mammals have been replaced by a much lighter beak, jaw bones, and jaw muscles in birds. Since birds do not chew food, the esophagus is large in diameter to accommodate larger food items. The heavy muscular gizzard, or muscular stomach (for mechanical digestion), and the proventriculus, or glandular stomach (Figure 11–1), are located within the main mass of the bird’s body. Less modification is evident in the avian small intestine and rectum; however, a cloaca is present as in reptiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, B., B. Anderson, E. Fabricius, and L. Svesson. (1960). Observations on central regulaion of body temperature and of food and water intake in the pigeon (Columba livia). Acta Physiol. Scand. 50, 328.

    Google Scholar 

  • Ahmad, A., R.C.P. Singh, and B.D. Garg. (1978). Evidence of non-cholinergic excitatory nervous transmission in chick ileum. Life Sci., 22, 1049.

    PubMed  CAS  Google Scholar 

  • Akahori, F., M. Matsurra, and K. Arai. (1971). Studies on the movement of the alimentary canal. VI. Physiological values in growing female chicks and quails. Bull. Azabu Univ. Vet. Med., No. 22, p. 25 (English summary).

    Google Scholar 

  • Akester, A.R. (1967). Renal portal shunts in the kidney of domestic fowl. J. Anat., 101, 569.

    PubMed  CAS  Google Scholar 

  • Akester, A.R., R.S. Anderson, K.J. Hill, and G.W. Osbaldiston. (1967). A radiographic study of urine flow in the domestic fowl. Br. Poult. Sci. 8, 209.

    PubMed  CAS  Google Scholar 

  • Ali, H.A., and J. McLelland. (1979). Neuron number in the intestinal myenteric plexus of the domestic fowl (Gallus gallus). Zentralbl. Veterinaermed. 8, 277.

    CAS  Google Scholar 

  • Aylott, M.V., O.H. Vestad, J.F. Stephens, and D.E. Turk. (1968). Effect of coccidial infection upon passage rates of digestive tract contents of chicks. Poult. Sci. 46, 900.

    Google Scholar 

  • Bartholmew, G.A., and T.J. Cade. (1963). The water economy of land birds. Auk, 80, 504.

    Google Scholar 

  • Bartlet, A.L., and T. Hassen. (1971). Contraction of chicken rectum to nerve stimulation after blockade of sympathetic and parasympathetic transmission. Q. J. Exp. Physiol. 56, 178.

    CAS  Google Scholar 

  • Bennett, T. (1969a). The effects of hyoscine and anticholinesterases on cholinergic transmission to the smooth muscle cells of the avian gizzard. Br. J. Pharmacol., 37, 585.

    PubMed  CAS  Google Scholar 

  • Bennett, T. (1969b). Studies on avian gizzard. Histochemical analysis of extrinsic and intrinsic innervation. Z. Zellforsch. Mikrosk. Anat., 98, 188.

    PubMed  CAS  Google Scholar 

  • Bennett, T. (1969c). Nerve-mediated excitation and inhibition of the smooth muscle cells of avian gizzard. J. Physiol. (London), 204, 669.

    CAS  Google Scholar 

  • Bennett, T. (1974). Peripheral and autonomic nervous systems. In “Avian Biology” ( D.S. Farner and J.R. King, Eds). New York: Academic Press.

    Google Scholar 

  • Bennett, T., and J.L.S. Cobb. (1969a). Studies on avian gizzard morphology and innervation of smooth muscle. Z. Zellforsch. Mikrosk. Anat., 96, 173.

    PubMed  CAS  Google Scholar 

  • Bennett, T., and J.L.S. Cobb. (1969b). Studies on avian gizzard: Auerbach’s plexus. Z. Zellforsch. Mikrosk. Anat., 99, 109.

    PubMed  CAS  Google Scholar 

  • Bennett, T., and J. Malmfors. (1970). The adrenergic nervous system of domestic fowl. Z. Zellforsch. Mikrosk. Anat., 106, 22.

    PubMed  CAS  Google Scholar 

  • Bolton, T.B. (1971). Physiology of nervous system. In “Physiology and Biochemistry of Fowl,” Vol. 2 (D.J. Bell and B.M. Freeman, Eds.). London: Academic Press, Chapter 28, p. 675.

    Google Scholar 

  • Bortoff, A. (1972). Digestion: Motility. Annu. Rev. Physiol., 34, 261.

    PubMed  CAS  Google Scholar 

  • Branch J., and J.H. Cummings. (1978). Comparison of radio- opaque pellets and chromium sesquioxide as inert markers in studies requiring accurate fecal collections. Gut, 19, 371.

    PubMed  CAS  Google Scholar 

  • Burnstock, C. (1969). Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol. Rev., 21, 247.

    PubMed  CAS  Google Scholar 

  • Calhoun, M. (1954). “Microscopic Anatomy of the Digestive System.” Ames: Iowa State College Press.

    Google Scholar 

  • Campbell, C.S., and J.D. Davies. (1974). Licking rate of rats reduced by intraduodenal and intraportal glucose infusion. Physiol. Behav., 12, 357.

    PubMed  CAS  Google Scholar 

  • Carpenter, J.W., C.M. Stein, A. Silverstein, and A. van Tienhoven. (1969). The effect of gold thioglucose on food consumption and reproduction of the Japanese quail. Poult. Sci., 48, 574.

    PubMed  CAS  Google Scholar 

  • Chaney, S.G., and M.R. Kare. (1966). Emesis in Birds. J. Am. Vet. Med. Assoc., 149, 938.

    Google Scholar 

  • Chodnik, K.S. (1948). Cytology of the glands associated with the alimentary tract of the domestic fowl (Gallus domesticus). Q. J. Microsc. Sci., 89, 75.

    PubMed  CAS  Google Scholar 

  • Christensen, J., S. Anuras, and R.L. Hauser. (1974). Migrating spike bursts and electrical slow waves in the cat colon. Effect of sectioning. Gastroenterology, 66, 240.

    PubMed  CAS  Google Scholar 

  • Daniel, E.E. (1969). Digestion: Motor function. Annu. Rev. Physiol., 31, 203.

    PubMed  CAS  Google Scholar 

  • Dansky, L.M., and F.W. Hill. (1952). Application of the chromic oxide indicator method to balance studies with growing chickens. J. Nutr., 47, 449.

    PubMed  CAS  Google Scholar 

  • Denbow, D.M. (1983). Food intake and temperature response to injections of catecholamines into the lateral ventricle of the turkey brain. Poult. Sci., 62, 1088.

    PubMed  CAS  Google Scholar 

  • Denbow, D.M., and R.D. Meyers. (1982). Inhibition of food intake of chickens following injections of cholecystokinin into the lateral ventricle of the brain. Poult. Sci., 61, 1449.

    Google Scholar 

  • Denbow, D.M., J.A. Cherry, H.P. VanKrey, and P.B. Siegel. (1982a). Food and water intake following injection of glucose into the lateral ventricle of the brain of broiler-type chicks. Poult. Sci., 61, 1713.

    PubMed  CAS  Google Scholar 

  • Denbow, D.M., H.P. VanKrey, and J.A. Cherry. (1982b). Feeding and drinking response of young chicks to injections of serotonin into the lateral ventricle of the brain. Poult. Sci., 61, 150.

    PubMed  CAS  Google Scholar 

  • Duke, G.E. (1982). Gastrointestinal motility and its regulation. Poult. Sci., 61, 1245.

    PubMed  CAS  Google Scholar 

  • Duke, G.E. (1984). Avian Digestion. In “Duke’s Physiology of Domestic Animals,” 10th ed. ( M.J. Swenson, Ed.). Ithaca: Cornell University Press, p. 359.

    Google Scholar 

  • Duke, G.E., and O.A. Evanson. (1972). Inhibition of gastric motility by duodenal contents in turkeys. Poult. Sci., 51, 1625.

    PubMed  CAS  Google Scholar 

  • Duke, G.E., and O.A. Evanson. (1976a). Diurnal cycles of gastric motility in normal and fasted turkeys. Poult. Sci., 55, 1082.

    Google Scholar 

  • Duke, G.E., and O.A. Evanson. (1976b). Gastroduodenal electrical potential changes and contractile activity in birds of prey. (Abstr.) Fed. Proc. Fed. Am. Soc. Exp. Biol., 35, 303.

    Google Scholar 

  • Duke, G.E., and D.D. Rhoades. (1977). Factors affecting meal to pellet intervals in great horned owls (Bubo virginianus). Comp. Biochem. Physiol. A, 56, 283.

    Google Scholar 

  • Duke, G.E., G.A. Petrides, and R.K. Ringer. (1968). Chromium-51 in food metabolizability and passage rate studies with the ring-necked pheasant. Poult. Sci., 48, 1356.

    Google Scholar 

  • Duke, G.E., H.E. Dziuk, and L. Hawkins. (1969). Gastrointestinal transit times in normal and bluecomb turkeys. Poult. Sci., 48, 835.

    Google Scholar 

  • Duke, G.E., H.E. Dziuk, and O.A. Evanson. (1972a). Gastric pressure and smooth muscle electrical potential changes in turkeys. Am. J. Physiol., 222, 167.

    PubMed  CAS  Google Scholar 

  • Duke, G.E., O.A. Evanson, J.G. Ciganek, J.F. Miskowiec, and T.E. Kostuch. (1972b). Inhibition of gastric motility in turkeys by intraduodenal injections of ammino acid solutions. Poult. Sci., 51, 1749.

    Google Scholar 

  • Duke, G.E., O.A. Evanson, and A.A. Jagers. (1975a). Meal to pellet intervals in 14 species of captive raptors. Comp. Biochem. Physiol. A, 53, 1.

    Google Scholar 

  • Duke, G.E., T.E. Kostuch, and O.A. Evanson. (1975b). Gastroduodenal electrical activity in turkeys. Am. J. Dig. Dis., 20, 1047.

    PubMed  CAS  Google Scholar 

  • Duke, G.E., T.E. Kostuch, and O.A. Evanson. (1975c). Electrical activity and intraluminal pressure changes in the lower small intestine of turkeys. Am. J. Dig. Dis., 20, 1040.

    PubMed  CAS  Google Scholar 

  • Duke, G.E., O.A. Evanson, P.T. Redig, and D.D. Rhoades. (1976a). Mechanism of pellet egestion in great horned owls (Bubo virginianus). Am. J. Physiol., 213, 1824.

    Google Scholar 

  • Duke, G.E., O.A. Evanson, and P.T. Redig. (1976b). A cephalic influence on gastric motility upon seeing food in domestic turkeys, great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis). Poult. Sci., 55, 2155.

    PubMed  CAS  Google Scholar 

  • Duke, G.E., W.D. Kuhlmann, and M.R. Fedde. (1977). Evidence for mechanoreceptors in the muscular stomach of the chicken. Poult. Sci., 56, 297.

    PubMed  CAS  Google Scholar 

  • Duke, G.E., J.R. Kimmel, P.T. Redig, and H.G. Pollack. (1979). Influence of exogenous avian pancreatic polypeptide on gastrointestinal motility of domestic turkeys. Poult. Sci., 58, 239.

    PubMed  CAS  Google Scholar 

  • Duke, G.E., O.A. Evanson, and B.J. Huberty. (1980). Electrical potential changes and contractile activity of the distal cecum of turkeys. Poult. Sci., 59, 1925.

    PubMed  CAS  Google Scholar 

  • Dunston, W.A. (1970). Excessive drinking (polydipsia) in a Galapagos mockingbird. Comp. Biochem. Physiol., 36, 143.

    Google Scholar 

  • Dunston, W.A., and E.G. Buss. (1969). Abnormal water balance in a mutant strain of chickens. Science, 161, 167.

    Google Scholar 

  • Dunston, W.A., E.G. Buss, W.H. Sawyer, and H.W. Sokol. (1972). Hereditary polydipsia and polyuria in chickens. Am. J. Physiol., 222, 1167.

    Google Scholar 

  • Durham, K. (1983). The mechanism and regulation of pellet egestion in the Red-tailed hawk (Bubeo jamaicensis) and related gastrointestinal contractile activity. M. S. Thesis, University of Minnesota.

    Google Scholar 

  • Dziuk, H.E. (1971). Reverse flow of gastrointestinal contents in turkeys. (Abstr.). Fed. Proc. Fed. Am. Soc. Exp. Biol., 30, 610.

    Google Scholar 

  • Dziuk, H.E., and G.E. Duke. (1972). Cineradiographic studies of gastric motility in turkeys. Am. J. Physiol., 222, 159.

    PubMed  CAS  Google Scholar 

  • Evered, M.D., and J.T. Fitzsimons. (1976). Drinking induced by angiotensin in the pigeon (Columba livia). J. Physiol. (London), 263, 193.

    Google Scholar 

  • Everett, S.D. (1968). Pharmacological responses of the isolated innervated intestine of the chick. Br. J. Pharmacol. Chemother., 33, 342.

    PubMed  CAS  Google Scholar 

  • Everett, S.D., and S.P. Mann. (1967). Catecholamine release by histamine from the isolated intestine of the chick. Eur. J. Pharmacol., 1, 310.

    CAS  Google Scholar 

  • Farner, D.S. (1960). Digestion and the digestive system. In “Biology and Comparative Physiology of Birds,” Vol. I (A.J. Marshall, Ed.). London: Academic Press, p. 411.

    Google Scholar 

  • Fitzsimons, J.T. (1978). The role of the renin-angiotensin system in the regulation of extracellular fluid volume. In Skadhauge (1981).

    Google Scholar 

  • Fitzsimons, J.D., and M.D. Evered. (1978). Eledoison, substance P, and related peptides: intracranial dipsogens in the pigeon and antidipsogens in the rat. Brain Res., 150, 533.

    PubMed  CAS  Google Scholar 

  • Gentle, M.J. (1971). The lingual taste buds of Gallus domesticus. L. Br. Poult. Sci., 12, 245.

    CAS  Google Scholar 

  • Gleaves, E.W., L.V. Tonkinson, J.D. Wolf, C.K. Harman, R.H. Thayer, and R.D. Morrison. (1968). The action and interaction of physiological food intake regulators in the laying hen. Poult. Sci., 47, 38.

    Google Scholar 

  • Goodman, I.J., and J.L. Brown. (1966). Stimulation of positively and negatively reinforcing sites in the avian brain. Life Sci., 5, 693.

    PubMed  CAS  Google Scholar 

  • Gonalons, E., R. Rial, and J.A. Tur. (1982). Phenol red as indicator of digestive tract motility in chickens. Poult. Sci., 61, 581.

    PubMed  CAS  Google Scholar 

  • Groebbels, F. (1932). “Der Vogel. Erster Band: Atmungswelt und Nahrungswelt.” Berlin: Verlag von Gebriider Borntraeger.

    Google Scholar 

  • Henken, A.M., A.M.J. Groote Schaarsberg, and W. van der Hel. (1982). The effect of environmental temperature on immune response and metabolism of the young chicken. 4. Effect of environmental temperature on some aspects of energy and protein metabolism. Poult. Sci., 62, 59.

    Google Scholar 

  • Hill, F.W., and L.M. Dansky. (1954). Studies of the energy requirements of chickens. I. The effects of dietary energy level in growth and feed consumption. Poult. Sci., 33, 112.

    CAS  Google Scholar 

  • Hill, K.J., and P.J. Strachan. (1975). Recent advances in digestive physiology of the fowl. In “Symposium of the Zoological Society of London, No. 35” ( M. Peaker, Ed.). London: Academic Press, p. 1.

    Google Scholar 

  • HillermanJ.P., F.H. Kratzer, and W.D. Wilson (1953). Food passage through chickens and turkeys and some regulating factors. Poult. Sci., 32, 332.

    Google Scholar 

  • Hodgkiss, J.P. (1981). Distension-sensitive receptors in the crop of the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol. (A), 70, 73.

    Google Scholar 

  • Holcombe, D.J., D.A. Roland, Sr., and R.H. Harms. (1976). The ability of hens to regulate protein intake when offered a choice of diets containing different levels of protein. Poult. Sci., 55, 1731.

    Google Scholar 

  • Howard, B.R. (1968). Drinking activity of hens in relation to egg laying. (Abstr.) Proc. Int. Congr. Physiol. Sci., 24th, 1968, 7, 202.

    Google Scholar 

  • Howard, B.R. (1975). Water balance of the hen during egg formation. Poult. Sci., 54, 1046.

    PubMed  CAS  Google Scholar 

  • Imabayashi, K., M. Kametaka, and T. Hatano. (1956). Studies on digestion in the domestic fowl. Tokyo J. Agric. Res., 2, 99.

    Google Scholar 

  • Jerrett, S.A., and W.R. Goodge. (1973). Evidence for amylase in avian salivary glands. J. Morphol., 139, 27.

    PubMed  CAS  Google Scholar 

  • Kaufman, S., and G. Peters. (1980). Regulatory drinking in the pigeon Columba livia. Am. J. Physiol., 239, R219.

    PubMed  CAS  Google Scholar 

  • Kimmel, J.R., H.G. Pollock, and R.L. Hazelwood. (1971). A new pancreatic polypeptide hormone. Fed. Proc. Fed. Am. Soc. Exp. Biol., 30, 1318.

    Google Scholar 

  • Kimmel, J.R., L.J. Hayden, and H.G. Pollock. (1975). Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem., 250, 9369.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H. (1978). Evolution of the target organ. In “Comparative Endocrinology” ( P.J. Gaillard and H.H. Boer, Eds.). Amsterdam: Elsevier/North Holland, p. 401.

    Google Scholar 

  • Kobayashi, H., and Y. Takei. (1982). Mechanisms for induction of drinking with special reference to angiotensin II. Comp. Biochem. Physiol. A, 71, 485.

    PubMed  CAS  Google Scholar 

  • Komeri, S., and H. Ohashi (1984). Presynaptic muscarine inhibition of nonadrenergic, non-cholinergic neuromuscular transmission in the chicken rectum. Br. J. Pharmacol., 82, 73.

    Google Scholar 

  • Kostuch, T.E., and G.E. Duke. (1975). Gastric motility in great horned owls. Comp. Biochem. Physiol. (A), 51, 201.

    CAS  Google Scholar 

  • Kuenzel, W.J. (1972). Dual hypothalamic feeding system in a migratory bird, Zonotrichia albicollis. Am. J. Physiol. 223, 1138.

    PubMed  CAS  Google Scholar 

  • Kuenzel, W.J. (1982). Central neural structures affecting food intake in birds: the lateral and ventral hypothalamic areas. In “Aspects of Avian Endocrinology: Practical and Theoretical Implications” (C.G. Scanes, M.A. Ottinger, A.D. Kenny, J. Balthazart, J. Gronshaw, and I. Chester-Jones, Eds.). Graduate Studies, Texas Technical University, 26, 211.

    Google Scholar 

  • Lai, H.C., and G.E. Duke. (1978). Colonic motility in domestic turkeys. Am. J. Dig. Dis., 23, 673.

    PubMed  CAS  Google Scholar 

  • Larbier, M., N.C. Baptista, and J.C. Blum. (1977). Effect of diet composition on digestive transit and amino acid intestinal absorption in chickens. Ann. Biol. Anim. Biochim. Biophys., 17, 597.

    CAS  Google Scholar 

  • Lepkovsky, S. (1973). Hypothalamic adipose tissue interrela-tionships. Fed. Proc. Fed. Am. Soc. Exp. Biol., 31, 1705.

    Google Scholar 

  • Lepkovsky, S. and M. Yasuda. (1966). Hypothalamic lesions, growth and body composition of male chickens. Poultry Sci., 45, 582.

    CAS  Google Scholar 

  • Ludwick, J.R., and P. Bass. (1967). Contractile and electric activity of the extrahepatic biliary tract and duodenum. Surg. Obstet. Gynecol., 124, 536.

    CAS  Google Scholar 

  • Macowan, M.M., and H.E. Magee. (1932). Observations on digestion and absorption in fowls. Q. J. Exp. Physiol., 21, 275.

    Google Scholar 

  • Malagelada, J.R., S.E. Carter, M.L. Brown, and G.L. Carlson. (1980). Radiolabeled fiber, a physiologic marker for gastric emptying and intestinal transit of solids. Dig. Dis. Sci., 25, 81.

    PubMed  CAS  Google Scholar 

  • Maley, M.J. (1969). Electrical stimulation of agonistric behavior of the mallard. Behavior, 34, 138.

    Google Scholar 

  • Mangold, E. (1950). “Die Verdauung bei den Nutztieren.” Berlin: Akademie-Verlag, p. 87.

    Google Scholar 

  • Matei-Vladescu, C., G. Apostol, and V. Popescu. (1977). Reduced food intake following cerebral intraventricular infusion of glucose in Gallus domesticus. Physiol. Behav., 19, 7.

    PubMed  CAS  Google Scholar 

  • Mateos, G.G., J.L. Sell, and J.A. Eastwood. (1982). Rate of food passage (transit time) as influenced by level of supplemental fat. Poult. Sci., 61, 94.

    PubMed  CAS  Google Scholar 

  • Maurice, D.V. (1983). Partial lipectomy and alterations in energy balance in chickens fed high and low fat diets. Fed. Proc. Fed. Am. Soc. Exp. Biol., 42, 668.

    Google Scholar 

  • McLelland, J. (1979). Digestive system. In “Form and Function in Birds” ( A.S. King and J. McLelland, Eds.). London: Academic Press, p. 69.

    Google Scholar 

  • Mu,J.Y., T.H. Yin, C.L. Hamilton, and J.R. Brobeck. (1968). Variability of body fat in hyperphagic rats. Yale J. Biol. Med., 41, 133.

    Google Scholar 

  • Nishida, T., Y.K. Paik, and M. Yasuda. (1969). LVIII. Blood vascular supply of the glandular stomach and muscular stomach. Jpn. J. Vet. Sci., 31, 51 (English summary).

    Google Scholar 

  • Nolf, P. (1937). On the existence in the bird of a system of intrinsic fibers connecting the stomach to the small intestine. J. Physiol., 90, 53 p.

    Google Scholar 

  • Nolf, P. (1938a). L’appareil nerveux de l’automatisme gastrique de l’oiseau. I. Essai d’analyse par la nicotine. Arch. Int. Physiol. Biochim., 46, 1.

    Google Scholar 

  • Nolf, P. (1938b). L’appareil nerveux de l’automatisme gas- trique de l’oiseau. II. Etude des effects causes par une ou plusieurs sections de l’anneau nerveux du gesier. Arch. Int. Physiol. Biochim., 46, 441.

    Google Scholar 

  • Ohashi, H. (1971). An electrophysiological study of transmission from intramural excitory nerve to smooth muscle cells of the chicken oesophagus. Jpn. J. Pharmacol., 21, 585.

    CAS  Google Scholar 

  • Oshima, S., K. Shimada, and T. Tonoue. (1974). Radiotele- metric observations of the durnal changes in respiration rate, heart rate and intestinal motility of domestic fowl. Poult. Sci., 53, 503.

    PubMed  CAS  Google Scholar 

  • Pastea, E., A. Nicolau, and J. Rosea. (1968). Dynamics of the digestive tract in hens and ducks. Acta Physiol. Hung., 33, 305.

    CAS  Google Scholar 

  • Phillips, R.E., and O.M. Youngnen. (1971). Brain stimulation and species typical behavior. Activities evoked by electrical stimulation of the brains of chickens. Anim. Behav., 19, 757.

    PubMed  CAS  Google Scholar 

  • Pintea, V., V. Jarubescu, and M. Cotrut. (1957). Contributiuni la studiul esofagului de gaina. Lucr. Stiint. Inst. Agron., 1, 297.

    Google Scholar 

  • Polin, D., and J.H. Wolford. (1973). Factors influencing food intake and caloric balance in chickens. Fed. Proc. Fed. Am. Soc. Exp. Biol., 32, 1720.

    CAS  Google Scholar 

  • Polin, D., E.R. Wynosky, M. Loukides, and C.C. Porter. (1967). A possible urinary back flow to ceca revealed by studies on chicks with artificial anus and fed amprolium-C14 or thiamine-C14. Poult. Sci., 46, 89.

    Google Scholar 

  • Prys-Jones, R.P., L. Schifferli, and D.W. Macdonald. (1973). The use of an emetic in obtaining food samples from passerines. Ibis, 116, 60.

    Google Scholar 

  • Radke, W.J., and M.J. Frydendall. (1974). A survey of emetics for use in stomach contents recovery in the house sparrow. Am. Midi. Nat., 92, 164.

    Google Scholar 

  • Rea, A.M. (1973). Turkey vultures casting pellets. Auk, 90, 209.

    Google Scholar 

  • Richardson, A.J. (1970). The role of the crop in the feeding behavior of the domestic chicken. Anim. Behav., 18, 633.

    PubMed  CAS  Google Scholar 

  • Robinzon, B., N. Snapir, and S. Lepkovsky. (1982). Hypothalamic hyperphagia, obesity, and gonadal dysfunction: absence of consistent relationship between lesion site and physiological consequences. In “Aspects of Avian Endocrinology: Practical and Theoretical Implications” (C.G. Scanes, M.A. Ottinger, A.D. Kenny, J. Balthazart, j. Gronshaw, and I. Chester-Jones, Eds.) Graduate Studies, Texas Technical University, 26, 201.

    Google Scholar 

  • Roche, M., and J. Decerpit. (1977). Contrôles hormonal et nerveux de la motricité du tractue digestif de la pôule. Ann. Rech. Vet., 8, 25.

    PubMed  CAS  Google Scholar 

  • Röseler, M. (1929). Die Bedeutung der Blinddärme des Haushuhnes für die Resorption der Nahrung und Verdauung der Rohfaser. Z. Tierz. Zuechtungsbid., 13, 281.

    Google Scholar 

  • Rouff, H.J., and K.F. Sewing. (1971). Die Rolle des Kropfs bei der Steuerung der Magensaftsekretion von Hühnern. Naunyn-Schmeidbergs Arch. Pharmakol. Exp. Pathol., 271, 142.

    Google Scholar 

  • Russell, J., and P. Bass. (1983). Labeling and gastric emptying of gels in dogs. Fed. Proc. Fed. Am. Soc. Exp. Biol., 42, 759.

    Google Scholar 

  • Savory, C.J. (1978). The relationship between food and water intake and the effects of water restriction on laying Brown leghorn hens. Br. Poult. Sci., 19, 631.

    Google Scholar 

  • Savory, C.J., and M.J. Gentle. (1980). Intravenous injections of cholecystokenin and caerulin suppress food intake in domestic fowls. Experientia, 36, 1191.

    PubMed  CAS  Google Scholar 

  • Savory, C.J., G.E. Duke, and R.W. Bertoy. (1981). Influence of intravenous injections of cholecystokinin on gastrointestinal motility in turkeys and domestic fowls. Comp. Biochem. Physiol. A, 70, 179.

    Google Scholar 

  • Shirley, H.V., and A.V. Nalbandov. (1956). Effects of neurohypohysectomy in domestic chickens. Endocrinology, 58, 477.

    PubMed  CAS  Google Scholar 

  • Shurlock, T.G.H., and J.M. Forbes. (1981a). Evidence for hepatic glucostatic regulation of food intake in the domestic chicken and its interaction with gastro-intestinal control. Br. Poult. Sci., 22, 333.

    PubMed  CAS  Google Scholar 

  • Shurlock, T.G.H., and J.M. Forbes. (1981b). Factors affecting food intake in the domestic chicken: the effect of infusions of nutritive and non-nutritive substances into the crop and duodenum. Br. Poult. Sci., 22, 323.

    PubMed  CAS  Google Scholar 

  • Sibbald, I.R. (1979). Passage of feed through the adult rooster. Poult. Sci., 58, 446.

    PubMed  CAS  Google Scholar 

  • Skadhauge, E. (1981). Osmoregulation in birds. New York: Springer-Verlag.

    Google Scholar 

  • Smith, C.J.V. (1969). Alterations in the food intake of chickens as a result of hypothalamic lesions. Poult. Sci., 48, 475.

    PubMed  CAS  Google Scholar 

  • Smith, C.J.V. (1979). The hypothalamus and the regulation of feed intake. Poult. Sci., 58, 1619.

    PubMed  CAS  Google Scholar 

  • Sturkie, P.D. (Ed.). (1965). “Avian Physiology,” 2nd ed. Ithaca: Cornell University Press.

    Google Scholar 

  • Sturkie, P.D. (Ed.). (1976). “Avian Physiology,” 3rd ed. New York: Springer-Verlag.

    Google Scholar 

  • Sturkie, P.D., G. Dirner, and R. Gister. (1977). Shunting of blood from the renal portal to the hepatic portal circulation of chickens. Comp. Biochem. Physiol. A, 58, 213.

    Google Scholar 

  • Suzuki, M., and S. Nomura. (1975). Electromyographic studies on the deglutition movement in the fowl. Jpn. J. Vet. Sci., 37, 289.

    CAS  Google Scholar 

  • Takei, Y. (1977). Angiotensin and water intake in the Japanese quail (Coturnix coturnix japonica). Gen. Comp. Endocrinol., 31, 364.

    PubMed  CAS  Google Scholar 

  • Thornton, P.A., P.J. Schaible, and L.F. Wolterink. (1956). Intestinal transit and skeletal retention of radioactive strontium in the chick. Poult. Sci., 35, 1055.

    CAS  Google Scholar 

  • Tuckey, R., B.E. March, and J. Biely. (1958). Diet and the rate of food passage in the growing chick. Poult. Sci., 37, 786.

    Google Scholar 

  • Tweeton,J.R., R.E. Phillips, and F.W. Peek. (1973). Feeding behavior elicited by electrical stimulation of the brain of chickens, Gallus gallus. Poult. Sci., 52, 165.

    Google Scholar 

  • Uden, P., P.E. Colucci, and P.J. Van Soest. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. J. Sci. Food Agric., 31, 625.

    PubMed  CAS  Google Scholar 

  • Uemura, H., H. Kobayashi, Y. Okawara, and K. Yamaguchi. (1983). Neuropeptides and drinking in birds. In “Avian Endogrinology: Environmental and Ecological Perspectives” (S. Mikami, K. Homma, and M. Wada, Eds.). Tokyo: Japan Scientific Society Press/Berlin: Springer-Verlag, p. 225.

    Google Scholar 

  • Vonk, H.H., and N. Postma. (1949). X-ray studies on the movements of the hen’s intestine. Physiol. Comp. Oecol., 1, 15.

    Google Scholar 

  • Wada, M., H. Kobayashi, and D.S. Farner. (1975). Induction of drinking in the White-crowned sparrow, Zonotrichia leuco- phrys gambelii, by intracranial injection of angiotensin II. Gen. Comp. Endocrinol., 26, 192.

    PubMed  CAS  Google Scholar 

  • Webb, T.E., and J.R. Colvin. (1964). The composition, structure and mechanism of formation of the lining of the gizzard of the chicken. Can. J. Biochem., 42, 59.

    CAS  Google Scholar 

  • Wehner, G.R., and R.L. Harrold. (1982). Crop volume of chickens as affected by body size, sex, and breed. Poult. Sci., 61, 598.

    PubMed  CAS  Google Scholar 

  • White, S.S. (1970). The larynx of Gallus domesticus. Ph.D. Thesis, University of Liverpool. In McLelland (1979).

    Google Scholar 

  • Wilson, E.K., F.W. Pierson, P.Y. Hester, R.L. Adams, and W.J. Stadelman. (1980). The effects of high environmental temperature on feed passage time and performance traits of Pekin ducks. Poult. Sci., 59, 2322.

    Google Scholar 

  • Wright, P. (1973). The neural basis of food and water intake in birds. Indian J. Physiol. Pharmacol., 17, 1.

    PubMed  CAS  Google Scholar 

  • Yntema, C.L., and W.S. Hammond. (1952). Experiments on the origin and development of the sacral autonomic nerves in chick embryo. J. Exp. Zool., 129, 375.

    Google Scholar 

  • Ziswiler, V., and D.S. Farner. (1972). Digestion and digestive system. “Avian Biology,” Vol. II ( D.S. Farner and James R. King, Eds.). London: Academic Press, p. 343.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Duke, G.E. (1986). Alimentary Canal: Anatomy, Regulation of Feeding, and Motility. In: Sturkie, P.D. (eds) Avian Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4862-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4862-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9335-4

  • Online ISBN: 978-1-4612-4862-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics