Skip to main content

The Many Faces of Structure-Based Potentials: From Protein Folding Landscapes to Structural Characterization of Complex Biomolecules

  • Chapter
  • First Online:
Computational Modeling of Biological Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Structural biology techniques, such as nuclear magnetic resonance (NMR), x-ray crystallography, and cryogenic electron microscopy (cryo-EM), have provided extraordinary insights into the details of the functional configurations of biomolecular systems. Recent advances in x-ray crystallography and cryo-EM have allowed for structural characterization of large molecular machines such as the ribosome, proteasome, and spliceosome. This deluge of structural data has been complemented by experimental techniques capable of probing dynamic information, such as Förster resonance energy transfer (FRET) and stopped flow spectrometry. While these experimental studies have provided tremendous insights into the dynamics of biomolecular systems, it is often difficult to combine the low resolution dynamical data with the high-resolution structural data into a consistent picture. Computer simulation of these biomolecular systems bridges static structural data with dynamic experiments at atomic resolution (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adcock, S.A., McCammon, J.A.: Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 106(5), 1589–1615 (2006)

    Article  Google Scholar 

  2. Andrews, B.T., Gosavi, S., Finke, J.M., Onuchic, J.N., Jennings, P.A.: The dual-basin landscape in gfp folding. Proc. Nat. Acad. Sci. USA 105(34), 12283–12288 (2008)

    Article  ADS  Google Scholar 

  3. de Araujo, A.F.P., Onuchic, J.N.: A sequence-compatible amount of native burial information is sufficient for determining the structure of small globular proteins. Proc. Nat. Acad. Sci. USA 106(45), 19001–19004 (2009)

    Article  ADS  Google Scholar 

  4. Azia, A., Levy, Y.: Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt. J. Mol. Biol. 393(2), 527–542 (2009)

    Article  Google Scholar 

  5. Baker, D.: A surprising simplicity to protein folding. Nature 405(6782), 39–42 (2000)

    Article  ADS  Google Scholar 

  6. Baxter, E.L., Jennings, P.A., Onuchic, J.N.: Interdomain communication revealed in the diabetes drug target mitoneet. Proc. Nat. Acad. Sci. USA 108(13), 5266–5271 (2011)

    Article  ADS  Google Scholar 

  7. Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of ACM/IEEE, p. 43 (2006)

    Google Scholar 

  8. Bryngelson, J., Wolynes, P.: Spin glasses and the statistical mechanics of protein folding. Proc. Nat. Acad. Sci. USA 84, 7524 (1987)

    Article  ADS  Google Scholar 

  9. Bryngelson, J., Wolynes, P.: Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem. 93, 6902–6915 (1989)

    Article  Google Scholar 

  10. Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins: Struct. Funct. Bioinf. 21(3), 167–195 (1995)

    Article  Google Scholar 

  11. Chavez, L.L., Onuchic, J.N., Clementi, C.: Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates. J. Am. Chem. Soc. 126(27), 8426–8432 (2004)

    Article  Google Scholar 

  12. Cheung, M.S., García, A.E., Onuchic, J.N.: Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Nat. Acad. Sci. USA 99(2), 685–690 (2002)

    Article  ADS  Google Scholar 

  13. Cho, S., Levy, Y., Wolynes, P.G.: P versus Q: Structural reaction coordinates capture protein folding on smooth landscapes. Proc. Nat. Acad. Sci. USA 103(3), 586–591 (2006)

    Article  ADS  Google Scholar 

  14. Cho, S.S., Weinkam, P., Wolynes, P.G.: Origins of barriers and barrierless folding in bbl. Proc. Nat. Acad. Sci. USA 105(1), 118–123 (2008)

    Article  ADS  Google Scholar 

  15. Clementi, C., Nymeyer, H., Onuchic, J.N.: Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298(5), 937–953 (2000)

    Google Scholar 

  16. Clementi, C., García, A.E., Onuchic, J.N.: Interplay among tertiary contacts, secondary structure formation and side-chain packing in the protein folding mechanism: all-atom representation study of protein l. J. Mol. Biol. 326(3), 933–954 (2003)

    Article  Google Scholar 

  17. Clementi, C., Plotkin, S.S.: The effects of nonnative interactions on protein folding rates: theory and simulation. Protein Sci. 13(7), 1750–1766 (2004)

    Article  Google Scholar 

  18. Ferguson, N., Schartau, P.J., Sharpe, T.D., Sato, S., Fersht, A.R.: One-state downhill versus conventional protein folding. J. Mol. Biol. 344(2), 295–301 (2004)

    Article  Google Scholar 

  19. Fersht, A.R.: Characterizing transition-states in protein-folding - an essential step in the puzzle. Curr. Opin. Struct. Biol. 5(1), 79–84 (1995)

    Article  Google Scholar 

  20. Frauenfelder, H., Sligar, S.G., Wolynes, P.G.: The energy landscapes and motions of proteins. Science 254(5038), 1598–1603 (1991)

    Article  ADS  Google Scholar 

  21. Gambin, Y., Schug, A., Lemke, E.A., Lavinder, J.J., Ferreon, A.C.M., Magliery, T.J., Onuchic, J.N., Deniz, A.A.: Direct single-molecule observation of a protein living in two opposed native structures. Proc. Nat. Acad. Sci. USA 106(25), 10153–10158 (2009)

    Article  ADS  Google Scholar 

  22. Gosavi, S., Chavez, L.L., Jennings, P.A., Onuchic, J.N.: Topological frustration and the folding of interleukin-1 beta. J. Mol. Biol. 357(3), 986–996 (2006)

    Article  Google Scholar 

  23. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theo. Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  24. Hyeon, C., Jennings, P.A., Adams, J.A., Onuchic, J.N.: Ligand-induced global transitions in the catalytic domain of protein kinase A. Proc. Nat. Acad. Sci. USA 106(9), 3023–3028 (2009)

    Article  ADS  Google Scholar 

  25. Hyeon, C., Onuchic, J.N.: Mechanical control of the directional stepping dynamics of the kinesin motor. Proc. Nat. Acad. Sci. USA 104(44), 17382–17387 (2007)

    Article  ADS  Google Scholar 

  26. Okazaki, K., Koga, N., Takada, S., Onuchic, J.N., Wolynes, P.G.: Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: struc-based molecular dynamics simulations. Proc. Nat. Acad. Sci. USA 103(32), 11844–11849 (2006)

    Article  ADS  Google Scholar 

  27. Jamros, M.A., Oliveira, L.C., Whitford, P.C., Onuchic, J.N., Adams, J.A., Blumenthal, D.K., Jennings, P.A.: Proteins at work: a combined small angle x-ray scattering and theoretical determination of the multiple structures involved on the protein kinase functional landscape. J. Biol. Chem. 285(46), 36121–36128 (2010)

    Article  Google Scholar 

  28. Kaya, H., Chan, H.S.: Solvation effects and driving forces for protein thermodynamic and kinetic cooperativity: how adequate is native-centric topological modeling? J. Mol. Biol. 326(3), 911–931 (2003)

    Article  Google Scholar 

  29. Koga, N., Takada, S.: Roles of native topology and chain-length scaling in protein folding: a simulation study with a go-like model. J. Mol. Biol. 313(1), 171–180 (2001)

    Article  Google Scholar 

  30. Kouza, M., Li, M.S., O’brien, E.P., Hu, C.-K., Thirumalai, D.: Effect of finite size on cooperativity and rates of protein folding. J. Phys. Chem. A 110(2), 671–676 (2006)

    Article  Google Scholar 

  31. Kumar, S., Rosenberg, J., Bouzida, D., Swendsen, R.H.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13(8), 1011 (1992)

    Google Scholar 

  32. Lammert, H., Schug, A., Onuchic, J.N.: Robustness and generalization of structure-based models for protein folding and function. Proteins: Struct. Funct. Bioinf. 77(4), 881–891 (2009)

    Article  Google Scholar 

  33. Leopold, P.E., Montal, M., Onuchic, J.N.: Protein folding funnels - a kinetic approach to the sequence structure relationship. Proc. Nat. Acad. Sci. USA 89(18), 8721–8725 (1992)

    Article  ADS  Google Scholar 

  34. Levy, Y., Cho, S.S., Shen, T., Onuchic, J.N., Wolynes, P.G.: Symmetry and frustration in protein energy landscapes: a near degeneracy resolves the rop dimer-folding mystery. Proc. Nat. Acad. Sci. USA 102(7), 2373–2378 (2005)

    Article  ADS  Google Scholar 

  35. Levy, Y., Onuchic, J.N., Wolynes, P.G.: Fly-casting in protein-dna binding: frustration between protein folding and electrostatics facilitates target recognition. J. Am. Chem. Soc. 129(4), 738–739 (2007)

    Article  Google Scholar 

  36. Levy, Y., Wolynes, P.G., Onuchic, J.N.: Protein topology determines binding mechanism. Proc. Nat. Acad. Sci. USA 101(2), 511–516 (2004)

    Article  ADS  Google Scholar 

  37. Lindorff-Larsen, K., Piana, S., Dror, R.O., Shaw, D.E.: How fast-folding proteins fold. Science 334, 517–520 (2011)

    Google Scholar 

  38. McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)

    Google Scholar 

  39. Mittal, A., Jayaram, B.: Backbones of folded proteins reveal novel invariant amino acid neighborhoods. J. Biomol. Struct. Dyn. 28(4), 443–454 (2011)

    Google Scholar 

  40. Miyashita, O., Onuchic, J.N., Wolynes, P.G.: Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc. Nat. Acad. Sci. USA 100(22), 12570–12575 (2003)

    Article  ADS  Google Scholar 

  41. Mor, A., Ziv, G., Levy, Y.: Simulations of proteins with inhomogeneous degrees of freedom: the effect of thermostats. J. Comput. Chem. 29(12), 1992–1998 (2008)

    Article  Google Scholar 

  42. Nechushtai, R., Lammert, H., Michaeli, D., Eisenberg-Domovich, Y., Zuris, J.A., Luca, M.A., Capraro, D.T., Fish, A., Shimshon, O., Roy, M., Schug, A., Whitford, P.C., Livnah, O., Onuchic, J.N., Jennings, P.A.: Allostery in the ferredoxin protein motif does not involve a conformational switch. Proc. Nat. Acad. Sci. USA 108(6), 2240–2245 (2011)

    Article  ADS  Google Scholar 

  43. Noel, J.K., Sulkowska, J.I., Onuchic, J.N.: Slipknotting upon native-like loop formation in a trefoil knot protein. Proc. Nat. Acad. Sci. USA 107(35), 15403–15408 (2010)

    Article  ADS  Google Scholar 

  44. Noel, J.K., Whitford, P.C., Sanbonmatsu, K.Y., Onuchic, J.N.: Smog@ctbp: simplified deployment of structure-based models in gromacs. Nucleic Acids Res. 38, W657 (2010)

    Article  Google Scholar 

  45. Nymeyer, H., García, A.E., Onuchic, J.N.: Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc. Nat. Acad. Sci. USA 95(11), 5921–5928 (1998)

    Article  ADS  Google Scholar 

  46. Oliveira, R.J., Whitford, P.C., Chahine, J., Wang, J., Onuchic, J.N., Leite, V.B.P.: The origin of nonmonotonic complex behavior and the effects of nonnative interactions on the diffusive properties of protein folding. Biophys. J. 99(2), 600–608 (2010)

    Article  ADS  Google Scholar 

  47. Onuchic, J.N., Wolynes, P.G.: Theory of protein folding. Curr. Opin. Struct. Biol. 14(1), 70–75 (2004)

    Article  Google Scholar 

  48. Orzechowski, M., Tama, F.: Flexible fitting of high-resolution x-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations. Biophys. J. 95(12), 5692–5705 (2008)

    Article  ADS  Google Scholar 

  49. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with namd. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  50. Ratje, A.H., Loerke, J., Mikolajka, A., Brünner, M., Hildebrand, P.W., Starosta, A.L., Dönhöfer, A., Connell, S.R., Fucini, P., Mielke, T., Whitford, P.C., Onuchic, J.N., Yu, Y., Sanbonmatsu, K.Y., Hartmann, R.K., Penczek, P.A., Wilson, D.N., Spahn, C.M.T.: Head swivel on the ribosome facilitates translocation by means of intra-subunit trna hybrid sites. Nature 468(7324), 713–716 (2010)

    Article  ADS  Google Scholar 

  51. Schug, A., Weigt, M., Onuchic, J.N., Hwa, T., Szurmant, H.: High-resolution protein complexes from integrating genomic information with molecular simulation. Proc. Nat. Acad. Sci. USA 106(52), 22124–22129 (2009)

    Article  ADS  Google Scholar 

  52. Schug, A., Whitford, P.C., Levy, Y., Onuchic, J.N.: Mutations as trapdoors to two competing native conformations of the rop-dimer. Proc. Nat. Acad. Sci. USA 104(45), 17674–17679 (2007)

    Article  ADS  Google Scholar 

  53. Scott, K.A., Batey, S., Hooton, K.A., Clarke, J.: The folding of spectrin domains i: wild-type domains have the same stability but very different kinetic properties. J. Mol. Biol. 344(1), 195–205 (2004)

    Article  Google Scholar 

  54. Shaw, D.E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R.O., Eastwood, M.P., Bank, J.A., Jumper, J.M., Salmon, J.K., Shan, Y., Wriggers, W.: Atomic-level characterization of the structural dynamics of proteins. Science 330(6002), 341–346 (2010)

    Article  ADS  Google Scholar 

  55. Sobolev, V., Sorokine, A., Prilusky, J., Abola, E.E., Edelman, M.: Automated analysis of interatomic contacts in proteins. Bioinformatics 15(4), 327–332 (1999)

    Article  Google Scholar 

  56. Socci, N.D., Onuchic, J.N., Wolynes, P.G.: Diffusive dynamics of the reaction coordinate for protein folding funnels. J. Chem. Phys. 104(15), 5860–5868 (1996)

    Article  ADS  Google Scholar 

  57. Sułkowska, J., Sułkowski, P., Szymczak, P., Cieplak, M.: Tightening of knots in proteins. Phys. Rev. Lett. 100(5), 058106 (2008)

    Article  ADS  Google Scholar 

  58. Sułkowska, J.I., Cieplak, M.: Selection of optimal variants of gō-like models of proteins through studies of stretching. Biophys. J. 95(7), 3174–3191 (2008)

    Article  ADS  Google Scholar 

  59. Sułkowska, J.I., Sułkowski, P., Onuchic, J.: Dodging the crisis of folding proteins with knots. Proc. Nat. Acad. Sci. USA 106(9), 3119–3124 (2009)

    Article  ADS  MATH  Google Scholar 

  60. Sutto, L., Lätzer, J., Hegler, J.A., Ferreiro, D.U., Wolynes, P.G.: Consequences of localized frustration for the folding mechanism of the im7 protein. Proc. Nat. Acad. Sci. USA 104(50), 19825–19830 (2007)

    Article  ADS  Google Scholar 

  61. Tirion, M.: Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77(9), 1905–1908 (1996)

    Article  ADS  Google Scholar 

  62. Veitshans, T., Klimov, D., Thirumalai, D.: Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties. Folding and Design 2(1), 1–22 (1997)

    Article  Google Scholar 

  63. Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  64. Whitford, P., Schug, A., Saunders, J., Hennelly, S., Onuchic, J., Sanbonmatsu, K.: Supplementary-nonlocal helix formation is key to understanding s-adenosylmethionine-1 riboswitch function. Biophys. J. 96(2), L7–L9 (2009)

    Article  Google Scholar 

  65. Whitford, P.C., Ahmed, A., Yu, Y., Hennelly, S.P., Tama, F., Spahn, C.M.T., Onuchic, J., Sanbonmatsu, K.Y.: Excited states of ribosome translocation revealed through integrative molecular modeling. Proc. Nat. Acad. Sci. USA 108(47), 18943–18948 (2011)

    Article  Google Scholar 

  66. Whitford, P.C., Geggier, P., Altman, R.B., Blanchard, S.C., Onuchic, J.N., Sanbonmatsu, K.Y.: Accommodation of aminoacyl-trna into the ribosome involves reversible excursions along multiple pathways. RNA 16(6), 1196–1204 (2010)

    Article  Google Scholar 

  67. Whitford, P.C., Gosavi, S., Onuchic, J.N.: Conformational transitions in adenylate kinase. Allosteric communication reduces misligation. J. Biol. Chem. 283(4), 2042–2048 (2008)

    Google Scholar 

  68. Whitford, P.C., Miyashita, O., Levy, Y., Onuchic, J.N.: Conformational transitions of adenylate kinase: switching by cracking. J. Mol. Biol. 366(5), 1661–1671 (2007)

    Article  Google Scholar 

  69. Whitford, P.C., Noel, J.K., Gosavi, S., Schug, A., Sanbonmatsu, K.Y., Onuchic, J.N.: An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields. Proteins: Struct. Funct. Bioinf. 75(2), 430–441 (2009)

    Article  Google Scholar 

  70. Wodak, S.J., Janin, J.: Structural basis of macromolecular recognition. Adv. Protein Chem. 61, 9–73 (2002)

    Article  Google Scholar 

  71. Wu, L., Zhang, J., Qin, M., Liu, F., Wang, W.: Folding of proteins with an all-atom go-model. J. Chem. Phys. 128(23), 235103 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

JKN would like to thank Joanna Sułkowska for many helpful discussions and Paul Whitford and Ryan Hayes for a careful reading of the chapter. This work was supported by the Center for Theoretical Biological Physics sponsored by the national science foundation (NSF) (Grant PHY-0822283) and NSF Grant NSF-MCB-1051438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José N. Onuchic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Noel, J.K., Onuchic, J.N. (2012). The Many Faces of Structure-Based Potentials: From Protein Folding Landscapes to Structural Characterization of Complex Biomolecules. In: Dokholyan, N. (eds) Computational Modeling of Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2146-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2146-7_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2145-0

  • Online ISBN: 978-1-4614-2146-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics