Skip to main content

EEG-Derived Neurophenotypes

  • Chapter
  • First Online:
Neurophenotypes

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 662 Accesses

Abstract

In this chapter, scalp electrophysiological measurements using electroencephalographs or EEGs are examined in light of new developments in complex systems theory. At the most fundamental level, brain function is electrical. The neural network that comprises the brain and peripheral nervous system, along with all the specialized cellular structures for propagating electrical impulses, is designed to support exquisitely fine control over the electrical patterns that determine all thought and behavior. It is not an exaggeration to say that the most fundamental medium of the mind is an electric field. Measurements of brain electrical activity may thus in principle contain information about cognitive phenotypes, if recurring patterns can be found that reliably correlate with them. The brain meets the mathematical definition of a complex dynamical system and EEG measurements are time series or signals produced by local clusters of neurons in this system. This chapter presents a methodology for discovering patterns in the complex systems parameters that can be derived from EEG measurements that is based on machine learning or pattern recognition algorithms. Without attempting to describe these complex features in neurobiological terms, machine learning algorithms can be used to find significant mappings from these measurable features to cognitive phenotypes, thus creating neuropsychiatric biomarkers that may be clinically useful. Experimental results from research to find early biomarkers for autism illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya UR, Sree SV, Chattopadhyay S et al (2011) Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst 21(3):199–211

    Article  PubMed  Google Scholar 

  • Antonsson EK, Cagan J (eds) (2001) Formal engineering design synthesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Bakare MO, Munir KM, Bello-Mojeed M (2014) Public health and research funding for childhood neurodevelopmental disorders in Sub-Saharan Africa: a time to balance priorities. Healthc Low-Resour Settings 2:1559

    Google Scholar 

  • Becker AE, Kleinman A (2012) An agenda for closing resource gaps in global mental health: innovation, capacity building, and partnerships. Harv Rev Psychiatry 20(1):3–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosl WJ, Bates A, DeGregorio G et al (in prep) EEG recurrence plot analysis for early detection of autism spectrum disorder (Manuscript in preparation)

    Google Scholar 

  • Bosl WJ, Bates A, Fernandez IS et al (in prep) EEG biomarkers for early identification of children with epileptic encephalopathies (Manuscript in preparation)

    Google Scholar 

  • Bosl WJ, Tager-Flusberg H, Tierney A, Nelson CA (2011) EEG complexity as a biomarker for autism spectrum disorder. BMC Medicine 9:18

    Google Scholar 

  • Castagli M, Eubank S, Farmer JD et al (1991) State space reconstruction in the presence of noise. Physica D 51:52–98

    Article  Google Scholar 

  • Charman T, Jones CR, Pickles A et al (2010) Defining the cognitive phenotype of autism. Brain Res 1380:10–21

    Article  PubMed  Google Scholar 

  • Collins PY, Patel V, Joestl SS et al (2011) Grand challenges in global mental health. Nature 475(7354):27–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniusis P, Vaitkus P (2008) Kernel regression on matrix patterns. Lith Math J 48(49):191–195

    Google Scholar 

  • Eckmann J, Kaphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 5:973–977

    Article  Google Scholar 

  • Fletcher R, Loschen E, Stavrakaki C et al (eds) (2007) A textbook of diagnosis of mental disorders in persons with intellectual disability (DM-ID). NADD Press, Kingston

    Google Scholar 

  • Hartwell LF, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–52

    Google Scholar 

  • Idro R, Newton C, Kiguli S et al (2010) Child neurology practice and neurological disorders in East Africa. J Child Neurol 25(4):518–524

    Article  PubMed  Google Scholar 

  • Juarrero A (2010) Complex dynamical systems theory. Available via Cognitive Edge. http://cognitive-edge.com/articles/complex-dynamical-systems-theory/

  • Kello CT, Rodny J, Warlaumont AS et al (2012) Plasticity, learning, and complexity in spiking networks. Crit Rev Biomed Eng 40(6):501–518

    Article  PubMed  Google Scholar 

  • Komalapriya C, Thiel M, Romano MC et al (2008) Reconstruction of a system’s dynamics from short trajectories. Phys Rev E: Stat, Nonlin, Soft Matter Phys 78(6 Pt 2):066217

    Article  Google Scholar 

  • Lu J, Tapia JC, White OL et al (2009) The interscutularis muscle connectome. PLoS Biol 7(2):e32

    Article  PubMed  Google Scholar 

  • Marwan, N (2012) Recurrence plots and cross recurrence plots. http://www.recurrence-plot.tk/

  • Marwan N, Romano MC, Thiel M et al (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438:237–329

    Article  Google Scholar 

  • McGregor C (2013) Big data in Neonatal intensive care. Computer 46(6):54–59

    Article  Google Scholar 

  • Niedermeyer E (2003) The clinical relevance of EEG interpretation. Clin Electroencephalogr 34(3):93–98

    Article  PubMed  Google Scholar 

  • Niedermeyer E, Lopes da Silva FH (2005) Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • NIMH (2008) National institute of mental health strategic plan. National Institutes of Health, Bethesda

    Google Scholar 

  • Noonan SK, Haist F, Muller RA (2009) Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations. Brain Res 1262:48–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Norman KA, Polyn SM, Detre GJ et al (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430

    Article  PubMed  Google Scholar 

  • Pascanu R, Jaeger H (2011) A neurodynamical model for working memory. Neural Netw 24(2):199–207

    Article  PubMed  Google Scholar 

  • Prince M, Patel V, Saxena S et al (2007) No health without mental health. Lancet 370(9590):859–877

    Article  PubMed  Google Scholar 

  • Rigotti M, Barak O, Warden M et al (2013) The importance of mixed selectivity in complex cognitive tasks. Nature 497:585–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong PJ, Fang JL, Wang LP et al (2012) Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial. BMC Complement Altern Med 12:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Schinkel S, Marwan N, Kurths J (2007) Order patterns recurrence plots in the analysis of ERP data. Cogn Neurodyn 1(4):317–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Schinkel S, Marwan N, Kurths J (2009) Brain signal analysis based on recurrences. J Physiol Paris 103(6):315–323

    Article  PubMed  Google Scholar 

  • Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324(5923):81–85

    Article  PubMed  Google Scholar 

  • Tager-Flusberg H, Joseph RM (2003) Identifying neurocognitive phenotypes in autism. Philos Trans R Soc Lond B Biol Sci 358(1430):303–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Trulla LL, Giuliani AL, Zbilut JP, Jr, CLW (1996) Recurrence quantification analysis of the logistic equation with transients. Physics Letters A 267:255–260

    Google Scholar 

  • Webber CL, Marwan N (eds) (2015) Recurrence quantification analysis. Understanding complex systems. Springer, New York

    Google Scholar 

  • Webber CL Jr, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76(2):965–973

    PubMed  Google Scholar 

  • Webber CL, Zbilut JP (2005) Recurrence quantitative analysis of nonlinear dynamical systems. In: Riley MA, Van Orden G (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences. National Science Foundation, Virginia

    Google Scholar 

  • Yamazaki M, Tucker DM, Terrill M et al (2013) Dense array EEG source estimation in neocortical epilepsy. Front Neurol 4:42

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Bosl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Bosl, W. (2016). EEG-Derived Neurophenotypes. In: Jagaroo, V., Santangelo, S. (eds) Neurophenotypes. Innovations in Cognitive Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3846-5_14

Download citation

Publish with us

Policies and ethics