Skip to main content

Appraising Circuit-Centered Neurophenotypes

  • Chapter
  • First Online:
Neurophenotypes

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 667 Accesses

Abstract

This chapter provides a critical appraisal of the concept of a circuit-centered neurophenotype that is conceptualized within a genome-to-phenome framework. Representing many of the kinds of variables that complicate this model are a few select ones that are sampled in this chapter. They include the following: (a) The problem of minimal circuit definition—the many scales of neural circuitry and the difficulty of demarcating circuits within some forms of neural architecture; (b) the modulation of neural circuits and the alterations of circuit architecture through non-gene-regulated factors such as synaptic plasticity, extra-synaptic neuromodulation, and bioelectric dynamics; and (c) technical and methodological considerations in circuit delineation—as is coming to light in the field of microscale connectomics. Adding these complex variables from neuroscience into the fray make for great attenuation of the notion of a circuit neurophenotype in the behavioral neurosciences, and this is given some depth of coverage in this chapter. However, the chapter does not dismiss the utility of the concept of circuit neurophenotypes. It concludes with a discussion of the kinds of additional information that may be needed in order for the concept to be better validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See for example the Special Issue of the Journal of Abnormal Psychology (2013), Vol. 122, No. 3.

  2. 2.

    It is also commonly said in neuroscience that the Cajalian “neuron hypothesis” and the Golgi-labeled sparse neuron diagrams that Cajal elegantly illustrated are deep historical roots of this notion.

  3. 3.

    Certain mathematical models may offer ways around this problem—see Chap. 14 in this volume—though in this instance, the number of neural variables that would be needed for the equations are currently improbable in terms of recording and discovery.

  4. 4.

    Lecture given at Boston University, titled “The Promises and Perils of Connectomics,” December 4th, 2015.

References

  • Adams DS, Uzel SG, Akagi J et al (2016) Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil syndrome. J Physiol 594(12):3245–3270

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34(6):458–465

    Article  PubMed  Google Scholar 

  • Bargmann CI, Marder E (2013) From the connectome to brain function. Nat Methods 10(6):483–490

    Article  PubMed  Google Scholar 

  • Beane WS, Morokuma J, Lemire JM et al (2013) Bioelectric signaling regulates head and organ size during planarian regeneration. Development 140(2):313–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Behrens TE, Sporns O (2012) Human connectomics. Curr Opin Neurobiol 22(1):144–153

    Article  PubMed  Google Scholar 

  • Berardi NA, Maffei L (2015) Brain structural and functional development: genetics and experience. Dev Med Child Neurol 57(Suppl 2):4–9

    Article  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  PubMed  Google Scholar 

  • Burns R, Roncal WG, Kleissas D et al (2013) The open connectome project data cluster: scalable analysis and vision for high-throughput neuroscience. Sci Stat Database Manag

    Google Scholar 

  • Castellanos FX, Di Martino A, Craddock RC et al (2013) Clinical applications of the functional connectome. Neuroimage 80:527–540

    Article  PubMed  Google Scholar 

  • Craddock N, Jones L, Jones IR et al (2010) Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Mol Psychiatry 15(2):146–153

    Article  PubMed  Google Scholar 

  • Craddock RC, Jbabdi S, Yan CG et al (2013) Imaging human connectomes at the macroscale. Nat Methods 10(6):524–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Deco G, Kringelbach ML (2014) Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84(5):892–905

    Article  PubMed  Google Scholar 

  • Emmons-Bell M, Durant F, Hammelman J et al (2015) Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type Girardia dorotocephala flatworms. Int J Mol Sci 16(11):27865–27896

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornito A, Bullmore ET (2012) Connectomic intermediate phenotypes for psychiatric disorders. Front Psychiatry 3(32):1–15

    Google Scholar 

  • Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16(3):159–172

    Article  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    Article  PubMed  Google Scholar 

  • Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204

    Article  PubMed  Google Scholar 

  • Hassan BA, Hiesinger PR (2015) Beyond molecular codes: simple rules to wire complex brains. Cell 163(2):285–291

    Article  PubMed  PubMed Central  Google Scholar 

  • Helmstaedter M (2013) Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10(6):501–507

    Article  PubMed  Google Scholar 

  • Hyman SE (2002) Neuroscience, genetics, and the future of psychiatric diagnosis. Psychopathology 35(2–3):139–144

    Article  PubMed  Google Scholar 

  • Izquierdo EJ, Beer RD (2013) Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS Comput Biol 9(2):e1002890

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson MB, Kawasawa YI, Mason CE et al (2009) Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62(4):494–509

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandel ER (2007) In search of memory: the emergence of a new science of mind, 1st edn. W. W. Norton and Company, New York

    Google Scholar 

  • Kasthuri N, Lichtman JW (2007) The rise of the ‘projectome’. Nat Methods 4(4):307–308

    Article  PubMed  Google Scholar 

  • Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661

    Article  PubMed  Google Scholar 

  • Kim IJ, Zhang Y, Yamagata M et al (2008) Molecular identification of a retinal cell type that responds to upward motion. Nature 452(7186):478–482

    Article  PubMed  Google Scholar 

  • Kirov G, Pocklington AJ, Holmans P et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17(2):142–153

    Article  PubMed  Google Scholar 

  • Levin M (2007) Gap junctional communication in morphogenesis. Prog Biophys Mol Biol 94(1–2):186–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin M (2012) Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. BioEssays 34(3):205–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin M (2013) Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. Wiley Interdiscip Rev Syst Biol Med 5(6):657–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin M (2014) Molecular bioelectricity: How endogenous voltage potentials control cell behavior and instruct pattern regulation in vitro. Mol Biol Cell 25:3835–3850

    Google Scholar 

  • Levin M, Stevenson CG (2012) Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu Rev Biomed Eng 14:295–323

    Article  PubMed  Google Scholar 

  • Lichtman (2015) “The Promises and Perils of Connectomics.” Lecture given at Boston University, December 4th, 2015

    Google Scholar 

  • Lichtman JW, Denk W (2011) The big and the small: challenges of imaging the brain’s circuits. Science 334(6056):618–623

    Article  PubMed  Google Scholar 

  • Lichtman JW, Pfister H, Shavit N (2014) The big data challenges of connectomics. Nat Neurosci 17(11):1448–1454

    Article  PubMed  PubMed Central  Google Scholar 

  • Linden DE (2012) The challenges and promise of neuroimaging in psychiatry. Neuron 73(1):8–22

    Article  PubMed  Google Scholar 

  • Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  Google Scholar 

  • Marder E, Thirumalai V (2002) Cellular, synaptic and network effects of neuromodulation. Neural Netw 15(4–6):479–493

    Article  PubMed  Google Scholar 

  • Marder E, O’Leary T, Shruti S (2014) Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 37:329–346

    Article  PubMed  Google Scholar 

  • Markram H (2012) The human brain project. Sci Am 306(6):50–55

    Article  PubMed  Google Scholar 

  • Mathalon DH, Sohal VS (2015) Neural oscillations and synchrony in brain dysfunction and neuropsychiatric disorders: it’s about time. JAMA Psychiatry 72(8):840–844

    Article  PubMed  Google Scholar 

  • Miniaci MC, Kim JH, Puthanveettil SV et al (2008) Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia. Neuron 59(6):1024–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Monakow CV (1969) Die lokalisation im grosshirn und derabbau derfunktion durchkortikale herde. In: Harris G, Pribram KH (eds) Mood, states and mind. Penguin Books, London, England, pp 27–37

    Google Scholar 

  • Morgan JL, Lichtman JW (2013) Why not connectomics? Nat Methods 10(6):494–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris SE, Cuthbert BN (2012) Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 14(1):29–37

    PubMed  PubMed Central  Google Scholar 

  • Mustard JL, Levin M (2014) Bioelectrical mechanisms for programming growth and form: taming physiological networks for soft body robotics. Soft Robot 1(3):169–191

    Article  Google Scholar 

  • Nesse RM, Stein DJ (2012) Towards a genuinely medical model for psychiatric nosology. BMC Med 10:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldham MC, Konopka G, Iwamoto K et al (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11(11):1271–1282

    Article  PubMed  PubMed Central  Google Scholar 

  • Parikshak NN, Gandal MJ, Geschwind DH (2015) Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet 16(8):441–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulsen O, Sejnowski TJ (2000) Natural patterns of activity and long-term synaptic plasticity. Curr Opin Neurobiol 10(2):172–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereda AE, Curti S, Hoge G et al (2013) Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta 1828(1):134–146

    Article  PubMed  Google Scholar 

  • Raman K, Wagner A (2011) The evolvability of programmable hardware. J R Soc Interface 8(55):269–281

    Article  PubMed  Google Scholar 

  • Rockland KS (2015) About connections. Front Neuroanat 9(61):1–7

    Google Scholar 

  • Seung HS (2009) Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron 62(1):17–29

    Article  PubMed  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1):49–65, 111–125

    Google Scholar 

  • Sirevaag AM, Greenough WT (1988) A multivariate statistical summary of synaptic plasticity measures in rats exposed to complex, social and individual environments. Brain Res 441(1–2):386–392

    Article  PubMed  Google Scholar 

  • Siri B, Quoy M, Delord B et al (2007) Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons. J Physiol Paris 101(1–3):136–148

    Article  PubMed  Google Scholar 

  • Sporns O (2013) Making sense of brain network data. Nat Methods 10(6):491–493

    Article  PubMed  Google Scholar 

  • Thompson A (1998) On the automatic design of robust electronics through artificial evolution. In: Sipper M, Mange D, Pérez-Uribe A (eds) Proceedings of Evolvable systems: from biology to hardware: second international conference, ICES 98, Lausanne, Switzerland, 23–25 September 1998. Springer, Berlin, Heidelberg, pp 13–24

    Google Scholar 

  • Thompson A, Layzell P (1999) Analysis of unconventional evolved electronics. Commun ACM 42(4):71–79

    Article  Google Scholar 

  • Thompson A, Layzell P (2000) Evolution of robustness in an electronics design. In: Miller J, Thompson A, Thomson P et al (eds) Proceedings of Evolvable systems: from biology to hardware: third international conference, ICES 2000, Edinburgh, Scotland, UK, 17–19 April 2000. Springer, Berlin, Heidelberg, pp 218–228

    Google Scholar 

  • Vazquez-Reina A, Michael G, Huang D, Lichtman J, Miller E (2011) Segmentation fusion for connectomics. In: IEEE international conference on computer vision, Barcelona, Spain, 6–13 November 2011, pp 177–184

    Google Scholar 

  • Weimann JM, Marder E (1994) Switching neurons are integral members of multiple oscillatory networks. Curr Biol 4(10):896–902

    Article  PubMed  Google Scholar 

  • Xia M, He Y (2011) Magnetic resonance imaging and graph theoretical analysis of complex brain networks in neuropsychiatric disorders. Brain Connect 1(5):349–365

    Article  PubMed  Google Scholar 

  • Zalesky A, Fornito A, Harding IH et al (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50(3):970–983

    Article  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoth Jagaroo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Jagaroo, V., Bosl, W., Santangelo, S.L. (2016). Appraising Circuit-Centered Neurophenotypes. In: Jagaroo, V., Santangelo, S. (eds) Neurophenotypes. Innovations in Cognitive Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3846-5_3

Download citation

Publish with us

Policies and ethics