Skip to main content

Sentinel Species in Oceans and Human Health

  • Chapter
  • First Online:
Environmental Toxicology

Abstract

A sentinel marine species is one which can provide early warning of existing or emerging health hazards from the ocean environment. Sentinel species are generally considered in two categories: (1) those which are sensitive indicators of a chemical contaminant, biological toxin, or pathogen due to their ability to concentrate or integrate exposures within a food web or ecosystem, and (2) marine organisms with physiology and/or diet similar enough to humans such that they may provide early indication of potential adverse health effects and provide insight into toxic mechanisms of a given hazardous agent.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bioaccumulation:

The accumulation of a substance in an organism. Bioaccumulation occurs when a substance is absorbed by an organism at a more rapid rate than it is metabolized and/or excreted by the organism.

Bioavailable:

Being in a state that can be readily absorbed by an animal.

Biomagnification:

The increase in concentration of a chemical or toxin that occurs as it is passed up the food chain.

Confounding factor:

A factor that correlates with both the exposure and response (i.e., independent and dependent variables in statistical terminology) so that it masks an actual association or falsely indicates an apparent association.

Epidemiology:

The study of the distribution and determinants of health-related states in populations.

Exposure:

Disease-causing factors, including infectious, toxic, nutritional, traumatic, genetic, degenerative, physiological, social, and behavioral.

HAB:

Harmful algal bloom, a proliferation or aggregation of algae forming dense patches which are harmful to the environment, plants, or animals. The harmful algae may produce hazardous toxins or may harm other marine organisms by depleting oxygen and blocking sunlight.

Hazardous agent:

Any chemical contaminant, biological toxin, or pathogen which presents a threat to human or animal health.

PAH:

Polycyclic aromatic hydrocarbon, a class of environmental pollutants that occur in oil and coal and are produced as byproducts of fuel burning. The toxicity of PAHs depends on the structure of the specific compound but many are carcinogens and/or have been linked to congenital defects.

Pathogenicity:

The ability of an agent to cause disease.

PCBs:

Polychlorinated biphenyls, a class of persistent chemicals with a broad range of toxic effects. PCBs were widely used in industrial applications until the late 1970s when their manufacture was banned in the USA.

POPs:

Persistent organic pollutants, organic compounds that persist in the environment because they are resistant to degradation and tend to bioaccumulate in animal tissues.

Zoonotic pathogen:

A pathogen that can be transmitted between animals and humans.

Bibliography

Primary Literature

  1. Jensen S (1966) Report of a new chemical hazard. New Science 32:612

    Google Scholar 

  2. Le Boeuf BJ, Bonnell ML (1971) DDT in California sea lions. Nature 234(5324):108–110

    Article  PubMed  Google Scholar 

  3. NRC (1991) Animals as sentinels of environmental health hazards. National Academy Press, Washington, DC

    Google Scholar 

  4. van der Schalie WH, Gardner HS Jr, Bantle JA, De Rosa CT, Finch RA, Reif JS, Reuter RH, Backer LC, Burger J, Folmar LC et al (1999) Animals as sentinels of human health hazards of environmental chemicals. Environ Health Perspect 107(4):309–315

    Article  PubMed  Google Scholar 

  5. Burkhart J, Gardner H (1997) Non-mammalian and environmental sentinels in human health: “back to the future?”. Hum Ecol Risk Assess 3(3):309–328

    Article  Google Scholar 

  6. Stahl R (1997) Can mammalian and non-mammalian “sentinel species” data be used to evaluate the human health implications of environmental contaminants? Hum Ecol Risk Assess 3(3):329–335

    Article  Google Scholar 

  7. Van Dolah FM (2000) Marine algal toxins: origins, health effects, and their increased occurrence. Environ Health Perspect 108(Suppl 1):133–141

    Article  PubMed  Google Scholar 

  8. Flewelling LJ, Naar JP, Abbott JP, Baden DG, Barros NB, Bossart GD, Bottein MYD, Hammond DG, Haubold EM, Heil CA et al (2005) Red tides and marine mammal mortalities. Nature 435(7043):755–756

    Article  PubMed  CAS  Google Scholar 

  9. Scholin CA, Gulland F, Doucette GJ, Benson S, Busman M, Chavez FP, Cordaro J, DeLong R, De Vogelaere A, Harvey J et al (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403(6765):80–84

    Article  PubMed  CAS  Google Scholar 

  10. Lipp EK, Rose JB (1997) The role of seafood in foodborne diseases in the United States of America. Rev Sci Tech 16(2):620–640

    PubMed  CAS  Google Scholar 

  11. Potasman I, Paz A, Odeh M (2002) Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin Infect Dis 35(8):921–928

    Article  PubMed  Google Scholar 

  12. Bogomolni AL, Gast RJ, Ellis JC, Dennett M, Pugliares KR, Lentell BJ, Moore MJ (2008) Victims or vectors: a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic. Dis Aquat Organ 81(1):13–38

    Article  PubMed  Google Scholar 

  13. Marine Mammal Protection Act (1972) 16 USC Chapter 31, vol 16, USC Chapter31, MMPA 1972

    Google Scholar 

  14. Roesijadi G, Young J, Drum A, Gurtisen J (1987) Behavior of trace metals in Mytilus edulis during a reciprocal transplant field experiment. Mar Ecol Prog Ser 15:155–170

    Google Scholar 

  15. Kimbrough K, Johnson W, Lauenstein G, Christensen J, Apeti D (2008) An assessment of two decades of contaminant monitoring in the Nation’s Coastal Zone, NOAA Technical Memorandum NOS NCCOS 74. National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment, Silver Spring, p 105

    Google Scholar 

  16. Ross PS, Ellis GM, Ikonomou MG, Barrett-Lennard LG, Addison RF (2000) High PCB concentrations in free-ranging Pacific killer whales, Orcinus orca: effects of age, sex and dietary preference. Mar Pollut Bull 40(6):504–515

    Article  CAS  Google Scholar 

  17. Krahn MM, Hanson MB, Schorr GS, Emmons CK, Burrows DG, Bolton JL, Baird RW, Ylitalo GM (2009) Effects of age, sex and reproductive status on persistent organic pollutant concentrations in “southern resident” killer whales. Mar Pollut Bull 58(10):1522–1529

    Article  PubMed  CAS  Google Scholar 

  18. Balmer B (2011) Patterns of persistent organochlorine contaminants in relation to sighting patterns of bottlenose dolphins from coastal Georgia, USA. Sci Total Environ 409(11):2094–2101

    Google Scholar 

  19. Sanger D, Blair A, DiDonato G, Washburn T, Jones S, Chapman R, Bergquist D, Riekerk G, Wirth E, Stewart J et al (2008) Support for integrated ecosystem assessments of NOAA’s National Estuarine Research Reserves System (NERRS), Volume 1: the impacts of coastal development on the ecology and human well-being of tidal creek ecosystems of the US Southeast, NOAA Technical Memorandum NOS NCCOS 82. National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, Charleston, p 76

    Google Scholar 

  20. Pugh RS, Becker PR, Porter BJ, Ellisor MB, Moors AJ, Wise SA (2008) Design and applications of the National Institute of Standards and Technology’s (NIST’s) environmental specimen banking programs. Cell Preserv Technol 6(1):59–72

    Article  Google Scholar 

  21. Aguilar A, Borrell A, Pastor T (1999) Biological factors affecting variability of persistent pollutant levels in cetaceans. In: Reijnders P, Aguilar A, Donavan G (eds) Chemical pollutants and cetaceans, vol Special Issue 1. International Whaling Commission, Cambridge, pp 83–116

    Google Scholar 

  22. Hansen LJ, Schwacke LH, Mitchum GB, Hohn AA, Wells RS, Zolman ES, Fair PA (2004) Geographic variation in polychorinated biphenyl and organochlorine pesticide concentrations in the blubber of bottlenose dolphins from the US Atlantic coast. Sci Total Environ 319(1–3):147–172

    Article  PubMed  CAS  Google Scholar 

  23. Whitehead H, Gordon J, Mathews E, Richard K (1990) Obtaining skin samples fromliving sperm whales. Mar Mamm Sci 6(4):316–326

    Article  Google Scholar 

  24. Greig DJ, Gulland FM, Rios CA, Hall AJ (2010) Hematology and serum chemistry in stranded and wild-caught harbor seals in central California: reference intervals, predictors of survival, and parameters affecting blood variables. J Wildl Dis 46(4):1172–1184

    PubMed  CAS  Google Scholar 

  25. Schwacke LH, Twiner MJ, De Guise S, Balmer BC, Wells RS, Townsend FI, Rotstein DC, Varela RA, Hansen LJ, Zolman ES et al (2010) Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events. Environ Res 110(6):548–555

    Article  PubMed  CAS  Google Scholar 

  26. Wells RS, Rhinehart HL, Hansen LJ, Sweeney JC, Townsend FI, Stone R, Casper D, Scott MD, Hohn AA, Rowles TK (2004) Bottlenose dolphins as marine ecosystem sentinels: developing a health monitoring system. EcoHealth 1:246–254

    Article  Google Scholar 

  27. Naar JP, Flewelling LJ, Lenzi A, Abbott JP, Granholm A, Jacocks HM, Gannon D, Henry M, Pierce R, Baden DG et al (2007) Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish. Toxicon 50(5):707–723

    Article  PubMed  CAS  Google Scholar 

  28. Truelove J, Iverson F (1994) Serum domoic acid clearance and clinical observations in the cynomolgus monkey and Sprague-Dawley rat following a single i.v. dose. Bull Environ Contam Toxicol 52(4):479–486

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki CA, Hierlihy SL (1993) Renal clearance of domoic acid in the rat. Food Chem Toxicol 31(10):701–706

    Article  PubMed  CAS  Google Scholar 

  30. Stewart JR, Gast RJ, Fujioka RS, Solo-Gabriele HM, Meschke JS, Amaral-Zettler LA, Del Castillo E, Polz MF, Collier TK, Strom MS et al (2008) The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ Health 7(Suppl 2):S3

    Article  PubMed  Google Scholar 

  31. Kueh CS, Chan KY (1985) Bacteria in bivalve shellfish with special reference to the oyster. J Appl Bacteriol 59(1):41–47

    Article  PubMed  CAS  Google Scholar 

  32. Miller WA, Atwill ER, Gardner IA, Miller MA, Fritz HM, Hedrick RP, Melli AC, Barnes NM, Conrad PA (2005) Clams (Corbicula fluminea) as bioindicators of fecal contamination with Cryptosporidium and Giardia spp. in freshwater ecosystems in California. Int J Parasitol 35(6):673–684

    Article  PubMed  Google Scholar 

  33. Thornton SM, Nolan S, Gulland FM (1998) Bacterial isolates from California sea lions (Zalophus californianus), harbor seals (Phoca vitulina), and northern elephant seals (Mirounga angustirostris) admitted to a rehabilitation center along the central California coast, 1994–1995. J Zoo Wildl Med 29(2):171–176

    PubMed  CAS  Google Scholar 

  34. Johnson SP, Nolan S, Gulland FM (1998) Antimicrobial susceptibility of bacteria isolated from pinnipeds stranded in central and northern California. J Zoo Wildl Med 29(3):288–294

    PubMed  CAS  Google Scholar 

  35. Miranda CD, Zemelman R (2001) Antibiotic resistant bacteria in fish from the Concepcion Bay, Chile. Mar Pollut Bull 42(11):1096–1102

    Article  PubMed  CAS  Google Scholar 

  36. Stephen C, Lester S, Black W, Fyfe M, Raverty S (2002) Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can Vet J 43(10):792–794

    PubMed  Google Scholar 

  37. Datta K, Bartlett KH, Baer R, Byrnes E, Galanis E, Heitman J, Hoang L, Leslie MJ, MacDougall L, Magill SS et al (2009) Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg Infect Dis 15(8):1185–1191

    Article  PubMed  Google Scholar 

  38. Datta K, Bartlett KH, Marr KA (2009) Cryptococcus gattii: emergence in Western North America: exploitation of a Novel Ecological Niche. Interdiscip Perspect Infect Dis 2009:176532

    PubMed  Google Scholar 

  39. Rotstein DS, West K, Levine G, Lockhart SR, Raverty S, Morshed MG, Rowles T (2010) Cryptococcus gattiivgi in a spinner dolphin (Stenella longirostris) from Hawaii. J Zoo Wildl Med 41(1):181–183

    Article  PubMed  Google Scholar 

  40. Rodriguez-Toro G (1993) Lobomycosis. Int J Dermatol 32(5):324–332

    Article  PubMed  CAS  Google Scholar 

  41. Rodriguez-Toro G, Tellez N (1992) Lobomycosis in Colombian Amer Indian patients. Mycopathologia 120(1):5–9

    Article  PubMed  CAS  Google Scholar 

  42. Van Bressem M, Van Waerebeek K, Reyes J, Felix F, Echegaray M, Siciliano S, Beneditto AD, Flach L, Viddi F, Avila I et al (2007) A preliminary overview of skin and skeletal diseases and traumata in small cetaceans from South American waters. Lat Am J Aquat Mamm 6(1):7–42

    Google Scholar 

  43. Cowan D (1993) Lobo’s disease in a bottlenose dolphin (Tursiops truncatus) from Matagorda Bay, Texas. J Wildl Dis 29:488–489

    PubMed  CAS  Google Scholar 

  44. Reif JS, Mazzoil MS, McCulloch SD, Varela RA, Goldstein JD, Fair PA, Bossart GD (2006) Lobomycosis in Atlantic bottlenose dolphins from the Indian River Lagoon, Florida. J Am Vet Med Assoc 228(1):104–108

    Article  PubMed  Google Scholar 

  45. Rotstein DS, Burdett LG, McLellan W, Schwacke L, Rowles T, Terio KA, Schultz S, Pabst A (2009) Lobomycosis in offshore bottlenose dolphins (Tursiops truncatus), North Carolina. Emerg Infect Dis 15(4):588–590

    Article  PubMed  Google Scholar 

  46. O’Shaughnessy A (1866) On green oysters. Annual Magazine of Natural History 18:221–228

    Google Scholar 

  47. Orton J (1923) Summary of an account of investigations into the cause or causes of the unusual mortality among oyster in English oyster beds during 1920 and 1921. J Mar Biol Assoc UK 13:1–23

    Article  Google Scholar 

  48. Langston W, Bebianno M, Burt G (1998) Metal handling strategies in molluscs. In: Langston W, Bebianno M (eds) Metal matabolism in aquatic environments. Chapman and Hall, London, pp 219–283

    Google Scholar 

  49. Crain DA, Guillette LJ Jr (1998) Reptiles as models of contaminant-induced endocrine disruption. Anim Reprod Sci 53(1–4):77–86

    Article  PubMed  CAS  Google Scholar 

  50. Cossins AR, Crawford DL (2005) Fish as models for environmental genomics. Nat Rev Genet 6(4):324–333

    Article  PubMed  CAS  Google Scholar 

  51. Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103(Suppl 7):173–178

    Article  PubMed  CAS  Google Scholar 

  52. Jobling S, Coey S, Whitmore JG, Kime DE, Van Look KJ, McAllister BG, Beresford N, Henshaw AC, Brighty G, Tyler CR et al (2002) Wild intersex roach (Rutilus rutilus) have reduced fertility. Biol Reprod 67(2):515–524

    Article  PubMed  CAS  Google Scholar 

  53. Jobling S, Nolan M, Tyler C (1998) Widespread sexual distribution in wild fish. Environ Sci Technol 32(2):498–506

    Article  Google Scholar 

  54. Grosell M, Walsh P (2006) Sentinel species and animal models of human health. Oceanography 19:126–133

    Article  Google Scholar 

  55. Black JJ, Baumann PC (1991) Carcinogens and cancers in freshwater fishes. Environ Health Perspect 90:27–33

    Article  PubMed  CAS  Google Scholar 

  56. Mix M (1986) Cancerous diseases in aquatic animals and their association with environmental pollutants: a critical review of the literature. Mar Environ Res 20:1–141

    Article  Google Scholar 

  57. McCain BB, Pierce KV, Wellings SR, Miller BS (1977) Hepatomas in marine fish from an urban estuary. Bull Environ Contam Toxicol 18(1):1–2

    Article  PubMed  CAS  Google Scholar 

  58. Pierce KV, McCain BB, Wellings SR (1978) Pathology of hepatomas and other liver abnormalities in English sole (Parophrys vetulus) from the Duwamish River estuary, Seattle, Washington. J Natl Cancer Inst 60(6):1445–1453

    PubMed  CAS  Google Scholar 

  59. Schwiewe M, Weber D, Myers M, Jacques F, Reichert W, Krone C, Malins D, McCain B, Chan S, Varanasi U (1991) Induction of cellular alteration and other hepatic lesions in English sole (Parophrys vetulus) exposed to an extract of an urban marine sediment. Can J Fish Aquat Sci 48:1750–1760

    Article  Google Scholar 

  60. Nogueira I, Lobo-da-Cunha A, Afonso A, Rivera S, Azevedo J, Monteiro R, Cervantes R, Gago-Martinez A, Vasconcelos V (2010) Toxic effects of domoic acid in the Seabream Sparus aurata. Mar Drugs 8(10):2721–2732

    Article  PubMed  CAS  Google Scholar 

  61. Lefebvre KA, Noren DP, Schultz IR, Bogard SM, Wilson J, Eberhart BT (2007) Uptake, tissue distribution and excretion of domoic acid after oral exposure in coho salmon (Oncorhynchus kisutch). Aquat Toxicol 81(3):266–274

    Article  PubMed  CAS  Google Scholar 

  62. Dahm R (2006) The zebrafish exposed: ‘see-through’ mutants may hold the key to unraveling the mysteries of embryonic development. Am Sci 94:446–453

    Google Scholar 

  63. Incardona JP, Day HL, Collier TK, Scholz NL (2006) Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol Appl Pharmacol 217(3):308–321

    Article  PubMed  CAS  Google Scholar 

  64. Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92(2):526–536

    Article  PubMed  CAS  Google Scholar 

  65. Saslowsky DE, Cho JA, Chinnapen H, Massol RH, Chinnapen DJ, Wagner JS, De Luca HE, Kam W, Paw BH, Lencer WI (2010) Intoxication of zebrafish and mammalian cells by cholera toxin depends on the flotillin/reggie proteins but not Derlin-1 or −2. J Clin Invest 120:4399–4409

    Article  PubMed  CAS  Google Scholar 

  66. Lefebvre KA, Tilton SC, Bammler TK, Beyer RP, Srinouanprachan S, Stapleton PL, Farin FM, Gallagher EP (2009) Gene expression profiles in zebrafish brain after acute exposure to domoic acid at symptomatic and asymptomatic doses. Toxicol Sci 107(1):65–77

    Article  PubMed  CAS  Google Scholar 

  67. Eto K (1997) Pathology of minamata disease. Toxicol Pathol 25(6):614–623

    Article  PubMed  CAS  Google Scholar 

  68. Goldstein T, Zabka TS, Delong RL, Wheeler EA, Ylitalo G, Bargu S, Silver M, Leighfield T, Van Dolah F, Langlois G et al (2009) The role of domoic acid in abortion and premature parturition of California sea lions (Zalophus californianus) on San Miguel Island, California. J Wildl Dis 45(1):91–108

    PubMed  CAS  Google Scholar 

  69. Zabka TS, Goldstein T, Cross C, Mueller RW, Kreuder-Johnson C, Gill S, Gulland FM (2009) Characterization of a degenerative cardiomyopathy associated with domoic acid toxicity in California sea lions (Zalophus californianus). Vet Pathol 46(1):105–119

    Article  PubMed  CAS  Google Scholar 

  70. Goldstein T, Mazet JA, Zabka TS, Langlois G, Colegrove KM, Silver M, Bargu S, Van Dolah F, Leighfield T, Conrad PA et al (2008) Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc Biol Sci 275(1632):267–276

    Article  PubMed  CAS  Google Scholar 

  71. Stewart I (2010) Environmental risk factors for temporal lobe epilepsy–is prenatal exposure to the marine algal neurotoxin domoic acid a potentially preventable cause? Med Hypotheses 74(3):466–481

    Article  PubMed  CAS  Google Scholar 

  72. Gulland FM, Trupkiewicz JG, Spraker TR, Lowenstine LJ (1996) Metastatic carcinoma of probable transitional cell origin in 66 free-living California sea lions (Zalophus californianus), 1979 to 1994. J Wildl Dis 32(2):250–258

    PubMed  CAS  Google Scholar 

  73. Ylitalo GM, Stein JE, Hom T, Johnson LL, Tilbury KL, Hall AJ, Rowles T, Greig D, Lowenstine LJ, Gulland FM (2005) The role of organochlorines in cancer-associated mortality in California sea lions (Zalophus californianus). Mar Pollut Bull 50(1):30–39

    Article  PubMed  CAS  Google Scholar 

  74. Acevedo-Whitehouse K, Gulland F, Greig D, Amos W (2003) Inbreeding: disease susceptibility in California sea lions. Nature 422(6927):35

    Article  PubMed  CAS  Google Scholar 

  75. Martineau D, Lagace A, Beland P, Higgins R, Armstrong D, Shugart LR (1988) Pathology of stranded beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary, Quebec, Canada. J Comp Pathol 98(3):287–311

    Article  PubMed  CAS  Google Scholar 

  76. De Guise S, Lagace A, Beland P (1994) Tumors in St. Lawrence beluga whales (Delphinapterus leucas). Vet Pathol 31(4):444–449

    Article  PubMed  Google Scholar 

  77. Girard C, Lagace A, Higgins R, Beland P (1991) Adenocarcinoma of the salivary gland in a beluga whale (Delphinapterus leucas). J Vet Diagn Invest 3(3):264–265

    Article  PubMed  CAS  Google Scholar 

  78. De Guise S, Lagace A, Beland P (1994) True hermaphroditism in a St. Lawrence beluga whale (Delphinapterus leucas). J Wildl Dis 30(2):287–290

    PubMed  Google Scholar 

  79. Mikaelian I, Labelle P, Kopal M, De Guise S, Martineau D (2003) Adenomatous hyperplasia of the thyroid gland in beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary and Hudson Bay, Quebec, Canada. Vet Pathol 40(6):698–703

    Article  PubMed  CAS  Google Scholar 

  80. Hall AJ, Gulland FM, Ylitalo GM, Greig DJ, Lowenstine L (2008) Changes in blubber contaminant concentrations in California sea lions (Zalophus californianus) associated with weight loss and gain during rehabilitation. Environ Sci Technol 42(11):4181–4187

    Article  PubMed  CAS  Google Scholar 

  81. Yordy JE, Wells RS, Balmer BC, Schwacke LH, Rowles TK, Kucklick JR (2010) Partitioning of persistent organic pollutants between blubber and blood of wild bottlenose dolphins: implications for biomonitoring and health. Environ Sci Technol 44(12):4789–4795

    Article  PubMed  CAS  Google Scholar 

  82. Pew Oceans Commission (2003) America’s living oceans: charting a course for sea change. A report to the nation, May 2003. Pew Oceans Commission, Arlington

    Google Scholar 

  83. US Commission on Ocean Policy (2004) An ocean blueprint for the 21st Century. Final report, Washington, DC. ISBN#0-9759462-0-X

    Google Scholar 

  84. Bayley S, Stotts VD, Springer PF (1978) Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay, 1958–1975. Estuaries 1(3):171–182

    Article  Google Scholar 

  85. Dustan P, Halas JC (1987) Changes in the reef-coral community of Carysfort Reef, Key Largo, Florida: 1974–1982. Coral Reefs 6:91–106

    Article  Google Scholar 

  86. Holland AF, Sanger DM, Gawle CP, Lerberg SB, Santiago MS, Riekerk GHM, Zimmerman LE, Scott GI (2004) Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. J Exp Mar Biol Ecol 298:151–178

    Article  Google Scholar 

  87. Kemp WM, Twilley RR, Stevenson JC, Boynton WR, Means JC (1983) The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Mar Technol Soc J 17:78–89

    Google Scholar 

  88. Hoegh-Guldberg O (1999) Coral bleaching, climate change and the future of the world’s coral reefs. Review. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  89. Porter JW, Tougas JI (2001) Reef ecosystems: threats to their biodiversity. In: Levin S (ed) Encyclopedia of biodiversity, vol 5. Academic, New York, pp 73–95

    Chapter  Google Scholar 

  90. Turgeon DD et al (2002) The state of coral reef ecosystems of the United States and Pacific Freely Associated States: 2002. National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Science, Silver Spring, p 265

    Google Scholar 

  91. Goreau T, McClanahan T, Hayes R, Strong A (2000) Conservation of coral reefs after the 1998 Global Bleaching Event. Conserv Biol 14(1):5–15

    Article  Google Scholar 

  92. Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 98(10):5419–5425

    Article  PubMed  CAS  Google Scholar 

  93. Coles SL, Brown BE (2003) Coral bleaching–capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  PubMed  CAS  Google Scholar 

  94. Kneib RT (1997) The role of tidal marshes in the ecology of estuarine nekton. Oceanogr Mar Biol Ann Rev 35:163–220

    Google Scholar 

  95. Mallin MA, Burkholder JM, Cahoon LB, Posey MH (2000) North and South Carolina coasts. Mar Pollut Bull 41:56–75

    Article  CAS  Google Scholar 

  96. Lerberg SB, Holland AF, Sanger DM (2000) Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 23(6):838–853

    Article  CAS  Google Scholar 

  97. Sanger DM, Holland AF, Scott GI (1999) Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals. Arch Environ Contam Toxicol 37:445–457

    Article  PubMed  CAS  Google Scholar 

  98. Sanger DM, Holland AF, Scott GI (1999) Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Arch Environ Contam Toxicol 37:458–471

    Article  PubMed  CAS  Google Scholar 

  99. Boesch DF, Brinsfield RB, Magnien RE (2001) Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. J Environ Qual 30(2):303–320

    Article  PubMed  CAS  Google Scholar 

  100. Beach D (2002) Coastal sprawl: the effects of urban design on aquatic ecosystems in the United States. Pew Oceans Commission, Arlington

    Google Scholar 

  101. DiDonato GT, Stewart JR, Sanger DM, Robinson BJ, Thompson BC, Holland AF, Van Dolah RF (2009) Effects of changing land use on the microbial water quality of tidal creeks. Mar Pollut Bull 58(1):97–106

    Article  PubMed  CAS  Google Scholar 

  102. U S Environmental Protection Agency (2001) National coastal condition report, EPA-620/R-01/005. Office of Research and Development, Office of Water, Washington, DC

    Google Scholar 

  103. H. John Heinz III Center for Science EatE (2008) The state of the nation’s ecosystems: measuring the lands, waters, and living resources of the United States. Island, Washington, DC

    Google Scholar 

  104. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451(7181):990–993

    Article  PubMed  CAS  Google Scholar 

  105. Schlesinger WH (2010) Translational ecology. Science 329(5992):609

    Article  PubMed  CAS  Google Scholar 

Books and Reviews

  • Bossart G (2006) Marine mammals as sentinel species for oceans and human health. Oceanography 19:134–137

    Article  Google Scholar 

  • Boyd IL, Bowen WD, Iverson SJ (eds) (2010) Marine mammal ecology and conservation, a handbook of techniques. Oxford University Press, New York

    Google Scholar 

  • Gulland FM (1999) Stranded seals: important sentinels. J Am Vet Med Assoc 214:1191

    PubMed  CAS  Google Scholar 

  • Scotch ML, Odofin PR (2009) Linkages between animal and human health sentinel data. BMC Vet Res 5:15

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori H. Schwacke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwacke, L.H., Gulland, F.M., White, S. (2013). Sentinel Species in Oceans and Human Health. In: Laws, E. (eds) Environmental Toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5764-0_18

Download citation

Publish with us

Policies and ethics