Skip to main content

Site-Specific Ocular Nucleic Acid Delivery

  • Chapter
  • First Online:
Focal Controlled Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 2824 Accesses

Abstract

The eye is a very complex organ consisting of many anterior and posterior tissues. Studies over the last 2 decades have demonstrated the promise of using nucleic acids, such as DNA, siRNA, antisense oligonucleotide (AS-ODNs), and aptamer, in treating acquired as well as inherited ocular diseases. Among various ocular drug delivery strategies, topical administration is the most convenient route. However, the presence of several anatomical and physiological barriers restricts this administration only for anterior tissues. Stability, physicochemical properties, and propensity of spreading to adjacent tissues are limiting factors for site-specific delivery of nucleic acids in posterior tissues. To overcome these hurdles, several novel routes and delivery systems have been developed in recent years. These novel delivery systems possess several advantages including sustained and site-specific delivery of therapeutic nucleic acids. In this chapter, attempts have been made to introduce the structure of the eye, the major types of nucleic acids for the treatment of ocular diseases, and various strategies that have been used to achieve site-specific delivery of nucleic acids to the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fattal E, Bochot A (2006) Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 58(11):1203–1223

    Article  CAS  PubMed  Google Scholar 

  2. Ali RR (2012) Ocular gene therapy: introduction to the special issue. Gene Ther 19(2):119–120

    Article  CAS  PubMed  Google Scholar 

  3. Klausner EA et al (2007) Corneal gene therapy. J Control Release 124(3):107–133

    Article  CAS  PubMed  Google Scholar 

  4. Bejjani RA et al (2007) Electrically assisted ocular gene therapy. Surv Ophthalmol 52(2):196–208

    Article  PubMed  Google Scholar 

  5. Kuno N, Fujii S (2011) Recent advances in ocular drug delivery systems. Polymers 3(1):193–221

    Article  CAS  Google Scholar 

  6. Hosoya K, Lee VH, Kim KJ (2005) Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm 60(2):227–240

    Article  CAS  PubMed  Google Scholar 

  7. Doolittle RF (1988) Lens proteins. More molecular opportunism. Nature 336(6194):18

    Article  CAS  PubMed  Google Scholar 

  8. Gaudana R et al (2010) Ocular drug delivery. AAPS J 12(3):348–360

    Article  CAS  PubMed  Google Scholar 

  9. (2006) Human Eye Physiology. Available from: http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/15ImageAnalysis/61HumanEyePhysiology.ppt

  10. Levin LA, Nilsson SFE, Hoeve JV, Wu S, Kaufman PL, Alm A (2012) Adler’s physiology of the eye. 11th edn. US Elsevier Health Bookshop. Available from: http://www.us.elsevierhealth.com/Medicine/Ophthalmology/book/9780323057141/Adlers-Physiology-of-the-Eye/

  11. Myles ME, Neumann DM, Hill JM (2005) Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev 57(14):2063–2079

    Article  CAS  PubMed  Google Scholar 

  12. Cheruvu NP, Kompella UB (2006) Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch’s layer. Invest Ophthalmol Vis Sci 47(10):4513–4522

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kim SH et al (2007) Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res 39(5):244–254

    Article  CAS  PubMed  Google Scholar 

  14. Robinson MR et al (2006) A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res 82(3):479–487

    Article  CAS  PubMed  Google Scholar 

  15. Hildebrand G, Fielder A (2011) Anatomy and physiology of the retina. In: Reynolds J, Olitsky S (eds) Pediatric retina. Springer, Berlin, pp 39–65

    Chapter  Google Scholar 

  16. Provis JM (2001) Development of the primate retinal vasculature. Prog Retin Eye Res 20(6):799–821

    Article  CAS  PubMed  Google Scholar 

  17. Trotter RR (1968) Cornea and sclera. Arch Ophthalmol 79(3):338–348

    Article  CAS  PubMed  Google Scholar 

  18. Colella P, Cotugno G, Auricchio A (2009) Ocular gene therapy: current progress and future prospects. Trends Mol Med 15(1):23–31

    Article  CAS  PubMed  Google Scholar 

  19. Crooke ST (2004) Antisense strategies. Curr Mol Med 4(5):465–487

    Article  CAS  PubMed  Google Scholar 

  20. Burmeister PE et al (2005) Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. Chem Biol 12(1):25–33

    Article  CAS  PubMed  Google Scholar 

  21. Klebe S et al (2001) Gene transfer to ovine corneal endothelium. Clin Experiment Ophthalmol 29(5):316–322

    Article  CAS  PubMed  Google Scholar 

  22. Arancibia-Carcamo CV et al (1998) Lipoadenofection-mediated gene delivery to the corneal endothelium: prospects for modulating graft rejection. Transplantation 65(1):62–67

    Article  CAS  PubMed  Google Scholar 

  23. Andrieu-Soler C et al (2006) Ocular gene therapy: a review of nonviral strategies. Mol Vis 12:1334–1347

    CAS  PubMed  Google Scholar 

  24. Liaw J, Chang SF, Hsiao FC (2001) In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther 8(13):999–1004

    Article  CAS  PubMed  Google Scholar 

  25. Hao J et al (2010) Gene delivery to cornea. Brain Res Bull 81(2–3):256–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tong YC et al (2007) Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J Gene Med 9(11):956–966

    Article  CAS  PubMed  Google Scholar 

  27. Wen SF et al (2003) Characterization of adenovirus p21 gene transfer, biodistribution, and immune response after local ocular delivery in New Zealand white rabbits. Exp Eye Res 77(3):355–365

    Article  CAS  PubMed  Google Scholar 

  28. Kim B et al (2004) Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol 165(6):2177–2185

    Article  CAS  PubMed  Google Scholar 

  29. Carlson EC et al (2004) In vivo gene delivery and visualization of corneal stromal cells using an adenoviral vector and keratocyte-specific promoter. Invest Ophthalmol Vis Sci 45(7):2194–2200

    Article  PubMed  Google Scholar 

  30. Jun AS, Larkin DF (2003) Prospects for gene therapy in corneal disease. Eye (Lond) 17(8):906–911

    Article  CAS  Google Scholar 

  31. Spencer B et al (2000) Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest Ophthalmol Vis Sci 41(6):1392–1401

    CAS  PubMed  Google Scholar 

  32. Bainbridge JW et al (2001) In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 8(21):1665–1668

    Article  CAS  PubMed  Google Scholar 

  33. George AJ et al (2000) Gene delivery to the corneal endothelium. Am J Respir Crit Care Med 162(4 Pt 2):S194–S200

    Article  CAS  PubMed  Google Scholar 

  34. Borras T (2003) Recent developments in ocular gene therapy. Exp Eye Res 76(6):643–652

    Article  CAS  PubMed  Google Scholar 

  35. Tanelian DL et al (1997) Controlled gene gun delivery and expression of DNA within the cornea. Biotechniques 23(3):484–488

    CAS  PubMed  Google Scholar 

  36. Mohan RR et al (2012) Gene therapy in the cornea: 2005–present. Prog Retin Eye Res 31(1):43–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bauer D et al (2006) Immunomodulation by topical particle-mediated administration of cytokine plasmid DNA suppresses herpetic stromal keratitis without impairment of antiviral defense. Graefes Arch Clin Exp Ophthalmol 244(2):216–225

    Article  CAS  PubMed  Google Scholar 

  38. Oshima Y et al (1998) Targeted gene transfer to corneal endothelium in vivo by electric pulse. Gene Ther 5(10):1347–1354

    Article  CAS  PubMed  Google Scholar 

  39. Sakamoto T et al (1999) Target gene transfer of tissue plasminogen activator to cornea by electric pulse inhibits intracameral fibrin formation and corneal cloudiness. Hum Gene Ther 10(15):2551–2557

    Article  CAS  PubMed  Google Scholar 

  40. Oshima Y et al (2002) Targeted gene transfer to corneal stroma in vivo by electric pulses. Exp Eye Res 74(2):191–198

    Article  CAS  PubMed  Google Scholar 

  41. Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110(3):479–489

    Article  CAS  PubMed  Google Scholar 

  42. Halhal M et al (2004) Iontophoresis: from the lab to the bed side. Exp Eye Res 78(3):751–757

    Article  CAS  PubMed  Google Scholar 

  43. Bochot A et al (1998) Comparison of the ocular distribution of a model oligonucleotide after topical instillation in rabbits of conventional and new dosage forms. J Drug Target 6(4):309–313

    Article  CAS  PubMed  Google Scholar 

  44. Berdugo M et al (2003) Delivery of antisense oligonucleotide to the cornea by iontophoresis. Antisense Nucleic Acid Drug Dev 13(2):107–114

    Article  CAS  PubMed  Google Scholar 

  45. Eljarrat-Binstock E et al (2008) Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release 126(2):156–161

    Article  CAS  PubMed  Google Scholar 

  46. Yasukawa T et al (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23(3):253–281

    Article  CAS  PubMed  Google Scholar 

  47. Anand V et al (2000) Additional transduction events after subretinal readministration of recombinant adeno-associated virus. Hum Gene Ther 11(3):449–457

    Article  CAS  PubMed  Google Scholar 

  48. Acland GM et al (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28(1):92–95

    CAS  PubMed  Google Scholar 

  49. Acland GM et al (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12(6):1072–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bainbridge JW et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239

    Article  CAS  PubMed  Google Scholar 

  51. Dudus L et al (1999) Persistent transgene product in retina, optic nerve and brain after intraocular injection of rAAV. Vision Res 39(15):2545–2553

    Article  CAS  PubMed  Google Scholar 

  52. Chadderton N et al (2013) Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy. Eur J Hum Genet 21(1):62–68

    Article  CAS  PubMed  Google Scholar 

  53. Drolet DW et al (2000) Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys. Pharm Res 17(12):1503–1510

    Article  CAS  PubMed  Google Scholar 

  54. Hangai M et al (1998) In vivo delivery of phosphorothioate oligonucleotides into murine retina. Arch Ophthalmol 116(3):342–348

    Article  CAS  PubMed  Google Scholar 

  55. Thrimawithana TR et al (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16(5–6):270–277

    Article  CAS  PubMed  Google Scholar 

  56. Saishin Y et al (2005) Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human-sized eye. Hum Gene Ther 16(4):473–478

    Article  CAS  PubMed  Google Scholar 

  57. Martin KR, Klein RL, Quigley HA (2002) Gene delivery to the eye using adeno-associated viral vectors. Methods 28(2):267–275

    Article  CAS  PubMed  Google Scholar 

  58. Rabinowitz JE et al (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76(2):791–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Flannery JG et al (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci U S A 94(13):6916–6921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhou S et al (2010) Ultrasound-targeted microbubble destruction mediated herpes simplex virus-thymidine kinase gene treats hepatoma in mice. J Exp Clin Cancer Res 29:170

    Article  CAS  PubMed  Google Scholar 

  61. Hu YZ et al (2009) Ultrasound microbubble contrast agents: application to therapy for peripheral vascular disease. Adv Ther 26(4):425–434

    Article  CAS  PubMed  Google Scholar 

  62. Wood SC et al (2012) Effects of ultrasound and ultrasound contrast agent on vascular tissue. Cardiovasc Ultrasound 10(1):29

    Article  PubMed Central  PubMed  Google Scholar 

  63. Unger EC et al (2001) Local drug and gene delivery through microbubbles. Prog Cardiovasc Dis 44(1):45–54

    Article  CAS  PubMed  Google Scholar 

  64. Lai CC et al (2001) Suppression of choroidal neovascularization by adeno-associated virus vector expressing angiostatin. Invest Ophthalmol Vis Sci 42(10):2401–2407

    CAS  PubMed  Google Scholar 

  65. Takahashi T et al (2000) Inhibition of experimental choroidal neovascularization by overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium cells. Am J Ophthalmol 130(6):774–781

    Article  CAS  PubMed  Google Scholar 

  66. Zhou XY et al (2009) Ultrasound-mediated microbubble delivery of pigment epithelium-derived factor gene into retina inhibits choroidal neovascularization. Chin Med J (Engl) 122(22):2711–2717

    CAS  Google Scholar 

  67. Garcia-Frigola C et al (2007) Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC Dev Biol 7:103

    Article  PubMed Central  PubMed  Google Scholar 

  68. Dezawa M et al (2002) Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 33(1):1–6

    Article  CAS  PubMed  Google Scholar 

  69. Souied EH et al (2008) Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. Exp Eye Res 87(3):168–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Cheng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Shukla, R.S., Cheng, K. (2014). Site-Specific Ocular Nucleic Acid Delivery. In: Domb, A., Khan, W. (eds) Focal Controlled Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9434-8_11

Download citation

Publish with us

Policies and ethics