Skip to main content

Processing of Ceramic Matrix Composites

  • Chapter
Ceramic Matrix Composites

Abstract

In this chapter we describe some of the important processing techniques for fabricating ceramic matrix composites. Among the items that one should take into account for choosing reinforcement and matrix materials are:

  • melting point

  • volatility

  • density

  • elastic modulus

  • coefficient of thermal expansion

  • creep characteristics

  • strength

  • fracture toughness

  • compatibility between fiber and matrix

    • chemical compatibility

    • thermal compatibility (should be able to withstand high temperature excursions)

    • compatibility with the environment, internal as well as external. The external compatibility mainly involves oxidation and evaporation characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barclay, S.J., J.R. Fox, and H.K. Bowen (1987) J. Mater Sci., 22, 4403.

    Article  CAS  Google Scholar 

  • Bhatt R.T. (1986), National Astronautics and Space Administration, NASA TN-88814.

    Google Scholar 

  • Bhatt R.T. (1990) J. Mater. Sci., 25, 3401.

    Article  CAS  Google Scholar 

  • Bickerdike, R.L., A.R.G. Brown, G. Hughes, and H. Ranson (1962) Proc. of the Fifth Conference on Carbon, S. Mrosowski, M.C. Studebaker, and P.L. Walker (eds.), Pergamon Press, Buffalo, NY, p. 575.

    Google Scholar 

  • Boccaccini, A.R., C. Kaya, and K. K. Chawla (2001) Composites Part A, 32, 997.

    Article  Google Scholar 

  • Bordia, R.K.. and R. Raj (1988) J. Am. Ceram. Soc., 71, 302.

    Article  CAS  Google Scholar 

  • Brown, D.R. and F.W. Salt (1965) J. App. Chem., 15, 40.

    Article  CAS  Google Scholar 

  • Brennan, J.J. and K.M. Prewo (1982) J. Mater. Sci., 17, 2371.

    Article  CAS  Google Scholar 

  • Burkland, C.V., W.E. Bustamante, R. Klacka and J.-M Yang (1988) in Whisker- and Fiber-Toughened Ceramics, ASM Intl., Materials Park, Ohio, p. 225.

    Google Scholar 

  • Burns, G.T. and G. Chandra (1989) J. Am. Ceram. Soc., 72, 334.

    Article  Google Scholar 

  • Caputo, A.J., D.P. Stinton and R.A. Lowden.(1987) Am. Ceram. Soc. Bull., 66, 1987, 368.

    CAS  Google Scholar 

  • Carlsson, J.O. (1990) Thin Solid Films, 168, 19.

    Google Scholar 

  • Chawla, K.K. (1987) Composite Materials, 2nd ed.,Springer-Verlag, New York.

    Book  Google Scholar 

  • Chawla N., K.K. Chawla, M. Koopman, B. Patel, C.C. Coffin, and J.I. Eldridge (2001) Comp. Sci. Tech., 61, 1923.

    Article  CAS  Google Scholar 

  • Chawla, N., Y.K. Tur, J.W. Holmes, J.R. Barber, and A. Szweda(1988) J. Am. Ceram. Soc., 81, 1221.

    Article  Google Scholar 

  • Chawla, N. (1997), Metall. & Mater. Trans. A, 28A, 2423.

    Article  CAS  Google Scholar 

  • Claussen, N., T. Le, and S. Wu (1989) J. Eur. Ceram. Soc., 5, 29.

    Article  CAS  Google Scholar 

  • Claussen, N., S. Wu, and D. Holtz (1994) J. Eur. Ceram. Soc., 14, 209.

    Article  Google Scholar 

  • Cornie, J.A., Y.-M. Chiang, D.R. Uhlmann, A. Mortensen, and J.M. Collins (1986) Am. Ceram. Soc. Bull., 65, 293.

    CAS  Google Scholar 

  • De Jonghe, L.C., M.N. Rahaman, C.H. Hseuh (1986) Acta Met., 39, 1467.

    Article  Google Scholar 

  • Erny, T., M. Seibold, O. Jarchow, and P. Greil (1993) J. Am. Ceram. Soc. 76, 207.

    Article  CAS  Google Scholar 

  • Fitzer, E. and D. Hegen (1979) Angew. Chem., 91, 316.

    Article  CAS  Google Scholar 

  • Fitzer, E. and J. Schlichting (1980) Z. Werkstoffteck., 11, 330.

    Article  CAS  Google Scholar 

  • Fitzer, E. and R. Gadow (1986) Am. Ceram. Soc. Bull., 65, 326.

    CAS  Google Scholar 

  • Forrest, C.W., P. Kennedy, and J.V. Shennan (1972) Special Ceramics, British Ceramic Research Association, Stoke-on-Trent, U.K., vol. 5, p.99.

    Google Scholar 

  • French, J.E. (1996) in Handbook of Continuous Fiber Ceramic Composites, American Ceramic Society, Westerville, OH,), p. 269.

    Google Scholar 

  • Gokoglu, S.A.(1992) Mater. Res. Soc. Symp. Proc. vol. 250, p. 17.

    Article  Google Scholar 

  • Gonon, M.F., G. Fantozzi, M. Murat, and J.P. Disson (1995) J. Eur. Ceram. Soc. 15, 185.

    Article  CAS  Google Scholar 

  • Greil, P. (1995) J. Am. Ceram. Soc., 78, 835.

    Article  CAS  Google Scholar 

  • Homeny, J., W.L. Vaughn, and M.K. Ferber (1987) Amer. Cer. Soc. Bull., 67, 333.

    Google Scholar 

  • Hurwitz, F.I., J.Z. Gyekenyesi, and P.J. Conroy (1989) Ceram. Eng. Sci. Proc., 10,750.

    Article  CAS  Google Scholar 

  • Hurwitz, F.J. (1992) NASA Tech. Memo, 105754.

    Google Scholar 

  • Illston, T.J, C.B. Ponton, P.M. Marquis, E.G. Butler (1993) Third Euroceramies, vol. 1, P. Duran and J.F. Fernandez (eds.), Faenza Editirice Iberica, Madrid, pp. 419–424.

    Google Scholar 

  • Kaya, C., A.R. Boccaccini., and K.K. Chawla (2000) J. Am. Ceram Soc., 20, 1189.

    Google Scholar 

  • Kristofferson, A., A. Warren, J. Brandt, and R. Lundberg (1993) in Proc. Int. Conf. HTCMC-1, (ed. R. Naslain et al.),Woodhead Pub., Cambridge, UK,., p. 151.

    Google Scholar 

  • Lipowitz, J., J.A. Rabe, L.K. Frevel, and R.L Miller (1990) J. Mater. Sci., 25, 2118.

    Article  CAS  Google Scholar 

  • Liu, H.Y., N. Claussen, M.J. Hoffmann, and G. Petzow (1991) J. Eur.Ceram. Soc. 7, 41.

    Article  CAS  Google Scholar 

  • Lowden, R.A., D.P. Stinton, and T.M. Besmann (1993) in Handbook of Continuous Fiber Ceramic Matrix Composites, Amer. Ceram. Soc., Westerrville, O H, p. 205.

    Google Scholar 

  • Lundberg, R., R. Pompe, and R. Carlsson (1990) Comp. Sci. Tech. 37, 165.

    Article  Google Scholar 

  • Naslain, R. et al. (1983) Euro-CVD-Four, The Centre, Eindhoven, p. 293.

    Google Scholar 

  • Naslain, R. (1992) in Ceramic Matrix Composites, R. Warren, ed., Chapman and Hall, London, p. 199.

    Google Scholar 

  • Phillips, D.C. (1983) in Fabrication of Composites, North-Holland, Amsterdam, p. 373.

    Google Scholar 

  • Prewo, K.M.(1982) J. Mater. Sci., 17, 3549.

    Article  CAS  Google Scholar 

  • Prewo, K.M.(1986) in Tailoring Multiphase and Composite Ceramics, Materials Science Research, Plenum Press, New York, vol. 20, p. 529.

    Chapter  Google Scholar 

  • Prewo, K.M. and J.J. Brennan (1980) J. Mater. Sci., 15, 463.

    Article  CAS  Google Scholar 

  • Prewo K.M., J.J. Brennan, and G.K. Layden (1986) Am. Ceram. Soc. Bull., 65, 305.

    CAS  Google Scholar 

  • Rahaman, M.N. and L.C. De Jonghe (1987) J. Am. Ceram. Soc., 70, C-348.

    Article  CAS  Google Scholar 

  • Raj, R. and R.K Bordia (1989) Acta Met., 32, 1003.

    Article  Google Scholar 

  • Riedel, R., G. Passing, H. Schonfelder, and R.J. Brook (1992) Nature, 355, 355.

    Article  Google Scholar 

  • Sacks, M.D., H.W. Lee, and O.E. Rojas (1987) J. Am. Ceram. Soc.,70, C-348.

    Article  Google Scholar 

  • Sambell, R.A.J., D.C. Phillips, and D.H. Bowen (1974) in Carbon Fibres: Their Place in Modern Technology, The Plastics Institute, London, p. 16/9.

    Google Scholar 

  • Sato, K., H. Morozumi, A. Tezuka, O. Funayama, and T. Isoda (1995), in High Temperature Ceramic-Matrix Composites II, American Ceramic Society, Westerville, OH, p. 199.

    Google Scholar 

  • Shalek, P.D., J.J. Petrovic, G.F. Hurley, F.D. Gac (1986) Am. Ceram. Soc. Bull., 65, 351.

    CAS  Google Scholar 

  • Sirieix, F., P. Goursat, A. Lecomte, and A. Dauger (1990) Comp. Sci. Tech., 37, 7.

    Article  Google Scholar 

  • Stinton, D.P., A.J. Caputo, and R.A. Lowden (1986) Am. Ceram. Soc. Bull., 65, 347.

    CAS  Google Scholar 

  • Stinton, D.P., A.J. Caputo, R.A. Lowden, and T.M. Besmann (1986) Ceram. Eng. Sci. Proc., 7, 983.

    Article  CAS  Google Scholar 

  • Urquhart, A.W. (1991) Mater. Sci. Eng., A144, 75.

    CAS  Google Scholar 

  • Wu, S. and N. Claussen (1994) J. Amer. Ceram. Soc., 77, 2898.

    Article  CAS  Google Scholar 

  • Yang, M. and R. Stevens (1990) J. Mater. Sci., 25, 4658.

    Article  CAS  Google Scholar 

Suggested Reading

  • Krenkel, W., R. Naslain, and H. Schneider (eds.) (2001) High Temperature Ceramic Matrix Composites, Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  • Kroke, E., Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel (2000) Silazane derived ceramics and related materials, Mater. Sci. Eng., R26, 97.

    CAS  Google Scholar 

  • Narula, C.K. (1995) Ceramic Precursor Technology and its Applications, Marcel Dekker, New York.

    Google Scholar 

  • National Materials Advisory Board (1991) High Temperature Metal and Ceramic Matrix Composites for Oxidizing Atmosphere Applications, NMAB-376, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (2003). Processing of Ceramic Matrix Composites. In: Ceramic Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1029-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1029-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7262-8

  • Online ISBN: 978-1-4615-1029-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics