Skip to main content

Deuterostome Monophyly and Phylogeny

  • Chapter
Evolutionary Biology

Abstract

The abundant data of developmental biology, both descriptive and experimental, are scattered through many serial publications and symposium volumes. However, the diversity that has been investigated by classical and modern techniques is relatively small. This is related to the reductionist aspect of much developmental research, to a minimal interest in a comparative approach, and to the availability and suitability of laboratory animals. Most symposium reports that I have examined offer little actual synthesis, although they cover key topics such as differential gene action, embryonic induction, and pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. T., 1973, Embryology and Phylogeny in Annelids and Arthropods, Pergamon Press, New York.

    Google Scholar 

  • Anderson, D. T., 1982, Origins and relationships among the animal phyla, Proc. Linn. Soc. New South Wales 106: 151–166.

    Google Scholar 

  • Angerer, R. C., and Davidson, E. H., 1984, Molecular indices of cell lineage specification in sea urchin embryos, Science 226: 1153–1160.

    PubMed  CAS  Google Scholar 

  • Azariah, J., 1973, Studies on the cephalochordates of the Madras coast. No. 15. The nature of the structural polysaccharide in Amphioxus, Acta Histochem. 46:10–17.

    Google Scholar 

  • Ballard, W. W., 1964, Comparative Anatomy and Embryology,Ronald Press, New York.

    Google Scholar 

  • Ballard, W. W., 1973a, Normal embryonic stages for salmonid fishes, based on Salmo gairdneri Richardson and Salvelinus fontinalis (Mitchill), J. Exp. Zool 184:7–26.

    Google Scholar 

  • Ballard, W. W., 1973b, Morphogenetic movements in Salmo gairdneri Richardson, J. Exp. Zool 184:27–48.

    Google Scholar 

  • Ballard, W. W., 1973c, A new fate map for Salmo gairdneri, J. Exp. Zool. 184:49–74.

    Google Scholar 

  • Ballard, W. W., 1981, Morphogenetic movements and fate maps of vertebrates, Am. Zool. 21: 391–399.

    Google Scholar 

  • Ballard, W. W., 1976, Problems of gastrulation, real and verbal, Biosci. 26:36–39.

    Google Scholar 

  • Ballard, W. W., 1982, Morphogenetic movements and fate map of the cypriniform teleost, Catostomus commersoni (Lacépède), J. Exp. Zool 219: 301–321.

    Google Scholar 

  • Balinsky, B. E., 1974, Supernumerary limb induction in the Anura, J. Exp. Zool. 188:195–202.

    Google Scholar 

  • Balinsky, B. I., 1975, An Introduction to Embryology, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Barrington, E. J. W., 1958, The localization of organically bound iodine in the endostyle of Amphioxus, J. Mar. Biol. Assoc. U. K 37: 117–126.

    Google Scholar 

  • Barrington, E. J. W., 1965, The Biology of Hemichordata and Protochordata, W. H. Freeman, San Francisco.

    Google Scholar 

  • Barrington, E. J. W., 1975, Problems of iodine binding in ascidians, in: Protochordates, Symp. Zool. Soc. Lond. 36: 129–158.

    Google Scholar 

  • Bateson, W., 1884, The early stages in the development of Balanoglossus, Q. J. Microsc. Sci. N. S 24: 208–236.

    Google Scholar 

  • Berrill, N. J., 1955, The Origin of Vertebrates, Oxford University Press, London.

    Google Scholar 

  • Betchaku, T., and Trinkaus, J. P., 1978, Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and the yolk cytoplasmic layers of Fundulus before and during epiboly, J. Exp. Zool. 206:381–426.

    Google Scholar 

  • Bone, Q., 1960, The origin of the chordates, J. Linn. Soc. Lond 44: 252–269.

    Google Scholar 

  • Britten, R. J., and Davidson, E. R., 1971, Repetitive and non-repetitive gene sequences and a speculation on the origins of evolutionary novelty, Q. Rev. Biol. 46:111–138. Bullock, T. H., 1945, Anatomical organization of the nervous system of Enteropneusta, Q. J. Microsc. Sci 86: 55–111.

    Google Scholar 

  • Burfield, S. T., 1927, Sagitta, Proc. Trans. Liverpool Biol. Soc 41: 1–104.

    Google Scholar 

  • Burgess, A. M. C., 1983, On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation, J. Anat 136:829–835.

    Google Scholar 

  • Bushman, F. D., and Crain, W. R., 1983, Conserved pattern of embryonic actin gene expres-sion in several sea urchins and a sand dollar, Dev. Biol 98:429–436.

    Google Scholar 

  • Cavey, M. J., 1982, Myogenic events in compound ascidian larvae, Am. Zool. 22:807–815. Clark, R. B., 1964, Dynamics in Metazoan Evolution. The Origin of the Coelom and Segments, Oxford University Press, London.

    Google Scholar 

  • Cloney, R. A., 1982, Ascidian larvae and the events of metamorphosis, Am. Zool. 22: 817826.

    Google Scholar 

  • Colwin, A. L., and Colwin, L. H., 1950, The developmental capacities of separated early blastomeres of an enteropneust, Saccoglossus kowalevskii, J. Exp. Zool. 115:263–286.

    Google Scholar 

  • Colwin, A. L., and Colwin, L. H., 1953, The normal embryology of Saccoglossus kowa-levskii (Enteropneusta), J. Morphol 92: 401–436.

    Google Scholar 

  • Conklin, E. G., 1905, Mosaic development in ascidian eggs, J. Exp. Zool 2: 145–223.

    Google Scholar 

  • Conklin, E. G., 1932, The embryology of Amphioxus, J. Morphol 54: 69–118.

    Google Scholar 

  • Cooke, J., 1982, The relation between scale and completeness of pattern in vertebrate em-bryogenesis: Models and experiments, Am. Zool. 22: 91–104.

    Google Scholar 

  • Cooke, J., 1984, Morphallaxis and early vertebrate development, in: Pattern Formation. A Primer in Developmental Biology ( G. M. Malacinski, ed.), pp. 481–506, Macmillan, New York.

    Google Scholar 

  • Czihak, G., 1975, The Sea Urchin Embryo. Biochemistry and Morphogenesis, Springer-Verlag, Berlin.

    Google Scholar 

  • Davenport, R., 1979, An Outline of Animal Development, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Davidson, E. H., Hough-Evans, B. R., and Britten, R. J., 1982, Molcular biology of the sea urchin embryo, Science 217: 17–26.

    PubMed  CAS  Google Scholar 

  • Davis, B. 1908, The early life history of Dolichoglossus pusillus, Univ. Calif. Pub. Zool 4:187–226.

    Google Scholar 

  • Dean, B., 1899, On the embryology of Bdellostoma stouti, in: Festschrift zurn 70 Geburtstag von Carl von Kupffer, pp. 221–276, Jena.

    Google Scholar 

  • De Beer, G. R., 1932, Vertebrate Zoology, Macmillan, New York.

    Google Scholar 

  • De Beer, G. R., 1937, The Development of the Vertebrate skull, Oxford University Press, London.

    Google Scholar 

  • De Beer, G. R., 1958, Embryos and Ancestors, 3rd ed., Clarendon Press, Oxford. Denison, R., 1979, Acanthodii, in: Handbook of Paleoichthyology, Vol. 5 ( H.-P. Schultze, ed.), Gustav Fischer, Stuttgart.

    Google Scholar 

  • Deno, T., Nishida, H., and Satoh, N., 1984, Autonomous muscle cell differentiation in partial ascidian embryos according to the newly verified cell lineages, Dev. Biol. 104:322–328.

    Google Scholar 

  • De Queiroz, K., 1985, The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics, Syst. Zool 34:280–299.

    Google Scholar 

  • Dovarin, N., 1982, The Neural Crest, Cambridge University Press, London.

    Google Scholar 

  • Fell, H. B., 1948, Echinoderm embryology and the origin of chordates, Biol. Prey 23: 81–107.

    Google Scholar 

  • Fisher, S. E., Shaklee, J. B., Ferris, S. D., and Witt, G. S., 1980, Evolution of five multilocus isozyme systems in the chordates, Genetica 52 /53: 73–85.

    Google Scholar 

  • Flood, P.R., 1966, A peculiar mode of muscular innervation inAmphioxus, J. Comp. Neurol 126: 181–218.

    PubMed  CAS  Google Scholar 

  • Flood, P. R., 1975, Fine structure of the notochord of Amphioxus, Symp. Zool. Soc. Lond 36: 81–104.

    Google Scholar 

  • Forman, D., and Slack, J. M. W., 1980, Determination and cellular commitment in the embryonic amphibian mesoderm, Nature 286: 492–494.

    PubMed  CAS  Google Scholar 

  • Galileo, D. S., and Morrill, J. B., 1985, Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula, J. Morphol 185: 387–402.

    Google Scholar 

  • Garstang, W., 1894, Preliminary note on a new theory of the phylogeny of the chordata, Zool. Ant 17: 122–125.

    Google Scholar 

  • Garstang, W., 1922, The theory of recapitulation. A critical restatement of the biogenetic law, Zool. J. Linn. Soc 35: 81–101.

    Google Scholar 

  • Garstang, W., 1928, The morphology of the Tunicata and its bearing on the phylogeny of the chordata, Q. J. Microsc. Sci 72: 51–187.

    Google Scholar 

  • Geraudie, J., 1978, The fine structure of the early pelvic fin bud of the trout, Salmo gairdneri and S. trutta farlo, Acta Zool. 59: 85–96.

    Google Scholar 

  • Goodrich, E. S., 1918, Development of head segments in Scyllium, Q. J. Microsc. Sci 63: 1–30.

    Google Scholar 

  • Goodrich, E. S., 1930, Studies on the Structure and Development of Vertebrates, Macmillan, New York.

    Google Scholar 

  • Gustafson, T., and Toneby, M. I., 1971, How genes control morphogenesis, Am. Sci 59: 45 2462.

    Google Scholar 

  • Hall, B. K., 1978, Developmental and Cellular Skeletal Biology, Academic Press, New York. Hamburger, U., 1947, A Manual of Experimental Embryology, University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • Hardisty, M. W., 1982, Lampreys and hagfishes: Analysis of cyclostome relationships, in: The Biology of Lampreys, Vol. 4B (M. W. Hardisty and I. C. Potter, eds.), pp. 165260, Academic Press, New York.

    Google Scholar 

  • Harrison, R. G., 1895, Die Entwicklung der unpaaren und paarigen Flossen Tertteleostier, Arch. Mikrosk. Anat. Entwicklungsmech 46: 560–578.

    Google Scholar 

  • Harrison, R. G., 1969, Organization and Development of the embryo (S. Wilens, ed.), Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Hinchliffe, J. R., and Johnson, D. R., 1980, The Development of the Vertebrate Limb, Oxford University Press, Oxford.

    Google Scholar 

  • Holtfreter, J., 1934, Der Einfluss thermischer, mechanischer und chemischer Eingriffe auf

    Google Scholar 

  • die Induktionsfähigkeiten von Triton-Keimteile, Wilhem Roux’s Arch 132:225–306.

    Google Scholar 

  • Holtfreter, J., 1938, Differenzierungspotenzen isolierter Teile der Urodelengastrula, Wilhem Roux’s Arch. Entwicklungsmech 138: 522–656.

    Google Scholar 

  • Hörstadius, 1939, The mechanics of sea urchin development as studied by operative methods, Biol. Rev 14: 132–179.

    Google Scholar 

  • Hörstadius, 1973, Experimental Embryology of Echinoderms, Clarendon Press, Oxford. Hyman, L. H., 1955, The Invertebrates: Echinodermata. The Coelomate Bilateria, Vol. 4, McGraw-Hill, New York.

    Google Scholar 

  • Hyman, L. H., 1959, The Invertebrates: Smaller Coelomate Groups, Vol. 5, McGraw-Hill, New York.

    Google Scholar 

  • Jacobson, A. G., and Meier, S., 1984, Morphogenesis of the head of a newt: Mesodermal segments, neuromeres, and distribution of neural crest, 106:181–193.

    Google Scholar 

  • Jefferies, R. P. S., 1979, The origin of chordates—A methodological essay, in: The Origin of Major Invertebrate Groups ( M. R. House, ed.), pp. 443–477, Academic Press, London.

    Google Scholar 

  • Jeffery, W. R., Tomlinson, C. R., and Brodeur, R. D., 1983, Localization of actin messenger RNA during early ascidian development, Dev. Biol 99: 408–417.

    PubMed  CAS  Google Scholar 

  • Jollie, M., 1982, What are the `Calcichordata’? and the larger question of the origin of Chordates, Zool. J. Linn. Soc 75: 167–188.

    Google Scholar 

  • Katz, M. J., 1983, Comparative anatomy of the tunicate tadpole, Ciona intestinalis, Biol. Bull. 164:1–27.

    Google Scholar 

  • Kemp, A., 1982, The embryological development of the Queensland lungfish Neoceratodus forsteri, (Krefft), Mem. Queensland Mus 20: 553–597.

    Google Scholar 

  • Kerr, J. G., 1907, The development of Polypterus senegalus, in: Budgett Memorial Volume (J. G. Kerr, ed.), pp. 195–284, Cambridge University Press, Cambridge.

    Google Scholar 

  • Koltzoff, N. K., 1901, Entwicklungsgeschichte des Kopfes von Petromyzon planen, Bull.Soc. Imp. Nat. Moscou 15:259–589.

    Google Scholar 

  • Krejsa, R. J., 1979, The comparative anatomy of the integumental skeleton, in: Hyman’s Comparative Vertebrate Anatomy, 3rd ed. ( M. H. Wake, ed.), pp. 112–191, University of Chicago Press, Chicago, Illinois.

    Google Scholar 

  • L¢vtrup, S., 1977, The Phylogeny of Vertebrata, Wiley, New York.

    Google Scholar 

  • Mallatt, J., 1984, Early vertebrate evolution: Pharyngeal structure and the origin of gnathostomes, J. Zool. Soc. Lond. 204:169–183.

    Google Scholar 

  • Mangold, O., 1923, Transplantationversuche zur Frage der Spezifität und der Bildung der

    Google Scholar 

  • Keimblätter bei Triton, Arch. Microsk. Anat. Entwicklungsmech 100:198–301.

    Google Scholar 

  • Manwell, C., 1975, Enzyme variability in the protochordate Amphioxus, Nature 258:606–608.

    Google Scholar 

  • Medawar, P. B., 1954, The significance of inductive relationships in the development of vertebrates, J. Embryo!. Exp. Morphol 2: 172–174.

    Google Scholar 

  • Meier, S., 1979, Development of the chick embryo mesoblast: Formation of the embryonic axis and the establishment of metameric pattern, Dev. Biol 73: 25–45.

    Google Scholar 

  • Meier, S., 1981, Development of the chick embryo mesoblast: Morphogenesis of the pre-chordal plate and cranial segments, Dev. Biol 82: 49–61.

    Google Scholar 

  • Meier, S., 1984, Somite formation and its relationship to metameric patterning of the mesoderm, Cell Differentiation 14: 235–243.

    PubMed  CAS  Google Scholar 

  • Meier, S., and Packard, D. S., 1984, Morphogenesis of the cranial segments and distribution of neural crest in the embryos of the snapping turtle, Chelydra serpentina, Dev. Biol 102: 309–323.

    PubMed  CAS  Google Scholar 

  • Meier, S., and Tam, P. P. L., 1982, Metameric pattern development in the embryonic axis of the mouse. I. Differentiation of the cranial segments, Differentiation 21:95–108. Morgan, T., 1894, Development of Balanoglossus, J. Morphol. 9:1–86.

    Google Scholar 

  • Nakamura, O., and Takasaki, H., 1970, Further studies on the differentiation capacity of the marginal zone in the morula and blastula of Triturus pyrrhogaster, Embryologia 9: 223–237.

    Google Scholar 

  • Nelsen, O. E., 1953, Comparative Embryology of the Vertebrates,Blakiston, New York. Nielsen, C., 1985, Animal phylogeny in the light of the trochaea theory, Biol. J. Linn. Soc 25:243–229.

    Google Scholar 

  • Nieuwenhuys, R 1964, Comparative anatomy of the spinal cord, in: Progress in Brain

    Google Scholar 

  • Research,Vol. 11, Organization of the Spinal Cord,pp. 1–57, Elsevier, Amsterdam. Nieuwkoop, P. D., and Sutasurya, L. A., 1979, Primordial Germ Cells in the Chordates, Cambridge University Press, London.

    Google Scholar 

  • Nishida, H., and Satoh, N., 1983, Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight cell state, Dev. Biol 99: 382–394.

    PubMed  CAS  Google Scholar 

  • Nishida, H. and Satoh, N., 1985, Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16 and 32 cell stages, Dev. Biol 110:440–454.

    Google Scholar 

  • Noden, D. M., 1982, Patterns and organization of craniofacial skeletogenic and myogenic mesenchyme: A perspective, in: Factors and Mechanisms Influencing Bone Growth (A. D. Dixon and B. Sarnat, eds.), pp. 167–203, A. R. Liss, New York.

    Google Scholar 

  • Noden, D. M., 1983a, The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissues, Dev. Biol. 96:144–165.

    Google Scholar 

  • Noden, D. M., 1983b, The embryonic origins of avian cephalic and cervical muscles and associated connective tissues, Am. J. Anat 168: 257–276.

    PubMed  CAS  Google Scholar 

  • Noden, D. M., 1984, Craniofacial development: New views on old problems, Anat. Rec 208: 1–13.

    PubMed  CAS  Google Scholar 

  • Northcutt, R. G., and Gans, C., 1983, The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins, Q. Rev. Biol 58: 1–28.

    PubMed  CAS  Google Scholar 

  • Ortolani, G., 1955, The presumptive territory of the mesoderm in the ascidian germ, Experimentia 11: 445–446.

    Google Scholar 

  • Pucci-Minafra, I., and Ortolani, G., 1968, Differentiation and tissue interaction during muscle development of ascidian tadpoles. An electron microscope study, Dev. Biol 17: 69 2712.

    Google Scholar 

  • Patterson, C., 1983, How does phylogeny differ from ontogeny?, in: Development and Evolution ( B. C. Goodwin, N. Holder, and C. C. Wylie, eds.), pp. 1–31, Cambridge University Press, London.

    Google Scholar 

  • Raff, R. A., and Kaufman, T. C., 1983, Embryos, Genes and Evolution, Macmillan, New York.

    Google Scholar 

  • Rähr, H., 1981, The ultrastructure of the blood vessels of Branchiostoma lanceolatum (Pallas) (Cephalochordata), Zoomorphology 97: 53–74.

    Google Scholar 

  • Rao, K. P., 1953, The development of Glandiceps, J. Morphol 93: 1–14.

    Google Scholar 

  • Reverberi, G., 197la, Ascidians, in Experimental Embryology of Marine and Freshwater

    Google Scholar 

  • Invertebrates (G. Reverberi, ed.), pp. 507–550, Elsevier, North-Holland.

    Google Scholar 

  • Reverberi, G., 1971b, Amphioxus,in: Experimental embryology of Marine and Freshwater Invertebrates (G. Reverberi, ed.), pp. 551–572, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Reverberi, G., and Minganti, A., 1946, Evocator phenomena in the development of the ascidian egg (in Italian), Publ. Stax. Zool. Napoli 20:199–252.

    Google Scholar 

  • Reverberi, G., Ortolani, G., and Farinella-Ferruzza, N., 1960, The causal formation of the brain in the ascidian larva, Acta Embryo!. Morphol. Exp 3: 296–336.

    Google Scholar 

  • Rhodes, C. P., Ratcliffe, N. A., and Rowley, A. F., 1982, Presence of coelomocytes in the primitive chordate Amphioxus (Branchiostoma lanceolatum), Science 217:263–265.

    Google Scholar 

  • Rudnick, D., 1952, Development of the digestive tube and its derivatives, Ann. N. Y. Acad. Sci. 55:109–116.

    Google Scholar 

  • Russell, G. J., and Subak-Sharpe, J. H., 1977, Similarity of the general designs of proto-chordates and invertebrates, Nature 266: 533–536.

    PubMed  CAS  Google Scholar 

  • Saxén, L., and Toivonen, S., 1962, Primary Embryonic Induction,Logos Press, London. Schaeffer, B., 1977, The dermal skeleton in fishes, in: Problems in Vertebrate Evolution (S. M. Andrews, R. S. Miles, and A. D. Walker, eds.), pp. 25–52, Linnean Society Sym-posium Series 4.

    Google Scholar 

  • Schaeffer, B and Thomson, K. S., 1980, Reflections on agnathan–gnathostome relationships, in: Aspects of Vertebrate History (L. L. Jacobs, ed.) pp. 19–33, Museum Northern Arizona Press, Flagstaff.

    Google Scholar 

  • Schmidtke, J., Weiler, C., Kunz, B., and Engel, W., 1977, Isozymes of a tunicate and a cephalochordate as a test of polyploidisation in chordate evolution, Nature 266: 25 2253.

    Google Scholar 

  • Slack, J. M. W., 1983, From Egg to Embryo. Determinative Events in Early Development, Cambridge University Press, London.

    Google Scholar 

  • Slack, J. M. W., 1984, The early amphibian embryo—A hierarchy of developmental decisions, in: Pattern Formation. A Primer in Developmental Biology, pp. 457–480, Macmillan, New York.

    Google Scholar 

  • Slack, J. M. W., and Forman, D., 1980, An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos, J. Embryo!. Exp. Morphol 56: 283–299.

    Google Scholar 

  • Slack, J. M. W., Dale, L., and Smith, J. C., 1984, Analysis of embryonic induction by using cell lineage markers Phil. Trans. R. Soc. Lond. B 307:331–336.

    Google Scholar 

  • Smith, J. C., 1983, Disorganized embryos?, Nature 302: 658–659.

    PubMed  CAS  Google Scholar 

  • Smith, J. C., Dale, L., and Slack, J. M. W., 1985, Cell lineage labels and region-specific markers in the analysis of inductive interactions, in: Early amphibian development (J. Slack, ed.), J. Embryo!. Exp. Morphol. 89(Suppl.): 317–331.

    Google Scholar 

  • Spemann, H., and Mangold, H., 1924, Uber Induktion von Embryonenanlagen durch Implantation artfremder Organisatoren, Arch. Mikrosk. Anat. Entwicklungsmech 100: 599–638.

    Google Scholar 

  • Stent, G. S., Weisblat, D. A., Blair, S. S., and Zackson, S. L., 1982, Cell lineage in the development of the leech nervous system, in: Neuronal Development ( N. C. Spitzer, ed.), pp. 1–44, Plenum Press, New York.

    Google Scholar 

  • Terentiev, I. B.,1941, On the role played by the neural crest in the development of the dorsal fin in Urodela C. R. Acad. Sci. USSR 31:91–94.

    Google Scholar 

  • Thorpe, A., and Thorndyke, M. C., 1975The endostyle in relation to iodine binding Symp. Zool. Soc. Lond 36:159–177.

    Google Scholar 

  • Timourian, H., and Watchmaker, G., 1975, The sea urchin blastula: Extent of cellular de-termination, in: Developmental biology of the echinoderms, Am. Zool. 15:607–627.

    Google Scholar 

  • Toivonen, S., 1978, Regionalisation of the embryo, in: The Organizer (O. Nakamura and S. Toivonen, eds.), pp. 119–156, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1958, The development of isolated blastomeres of Amphioxus, Sci. Sin 7: 1280–1320.

    PubMed  CAS  Google Scholar 

  • Tung, T. C., Wu, S. C., Tung, Y. Y. F., 1960a, The developmental potencies of the blas-tomere layers in Amphioxus egg at the 32 cell stage, Sci. Sin 9:119–141.

    Google Scholar 

  • Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1960b, Rotation of the animal blastomeres in Amphioxus at the 8 cell stage, Sci. Rec 4: 389–394.

    Google Scholar 

  • Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1962a, The presumptive areas of the egg of Amphioxus, Sci. Sin. 11(5):629–644.

    Google Scholar 

  • Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1962b, Experimental studies on the neural induction in Amphioxus, Sci. Sin. 11:805–820.

    Google Scholar 

  • Tung, T. C., Wu, S. C., and Tung, Y. Y. F., 1965, Differentiation of the prospective ectodermal and endodermal cells after transportation to new surroundings in Amphioxus, Sci. Sin. 14:1785–1794.

    Google Scholar 

  • Vankerckhove, J., and Weber, K., 1984, Chordate muscle actins differ distinctly from invertebrate muscle actins J. Mol. Biol. 179:391–413.

    Google Scholar 

  • Waddington, C. H., 1940, Organizers and Genes, Cambridge University Press, Cambridge. addington, C. H., 1956, Principles of Embryology, Allen and Unwin, London.

    Google Scholar 

  • Watts, D. C., 1975, Evolution of phosphagen kinases in the chordate line, in: Protochordates, Symp. Zool. Soc. Lond. 36: 105–127.

    Google Scholar 

  • Welsch, U., 1975, The fine structure of the pharynx, cyrtopodocytes and digestive caecum of Amphioxus (Branchiostoma lanceolatum), in: Protochordates, Symp. Zool. Soc. Lond. 36: 17–41.

    Google Scholar 

  • Wessels, N. K., 1977, Tissue Interactions and Development, Benjamin/Cummings, Menlo Park, California.

    Google Scholar 

  • Weston, J. A., 1970, The migration and differentiation of neural crest cells, in: Advances in Morphogenesis, Vol. 8 ( M. Abercrombie, ed.), pp. 41–114, Academic Press, New York.

    Google Scholar 

  • Whitear, M., 1957, Some remarks on the ascidian affinities of vertebrates Ann. Mag. Nat. Hist. (12) 10:338–347.

    Google Scholar 

  • Whittaker, J. R., 1982, Muscle lineage cytoplasm can change the developmental expression in epidermal lineage cells of ascidian embryos, Dev. Biol 93: 463–470.

    PubMed  CAS  Google Scholar 

  • Whittaker, J. R., 1983, Quantitative regulation of acetylcholinesterase development in the muscle lineage cells of cleavage-arrested ascidian embryos, J. Embryo!. Exp. Morpho! 76: 235–250.

    CAS  Google Scholar 

  • Whittaker, J. R., Ortolani, G., and Farinella-Ferruzza, N., 1977, Autonomy of acetylcholinesterase differentiation in muscle lineage cells of ascidian embryos, Dey. Biol 55: 196200.

    Google Scholar 

  • Willey, A., 1894, Amphioxus and the Ancestry of Vertebrates (Columbia University Biology Series No. 11 ) Macmillan, New York.

    Google Scholar 

  • Wood, A., 1982, Early pectoral fin development and morphogenesis of the apical ectodermal ridge in the killifish, Amphiosemion scheeli, Anat. Rec 204: 349–356.

    CAS  Google Scholar 

  • Yamada, T., 1950, Dorsalization of the ventral marginal zone of the Triturus gastrula. 1. Ammonia treatment of the medio-ventral marginal zone, Biol. Bull. Mar. Biol. Lab 98: 98–121.

    CAS  Google Scholar 

  • Yamada, T., 1962, The inductive mechanism as a tool for understanding the basic mechanism of differentiation, J. Cell. Comp. Physiol 60: 49–64.

    CAS  Google Scholar 

  • Young, J. Z., 1962, The Life of Vertebrates, 2nd ed., Oxford University Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Schaeffer, B. (1987). Deuterostome Monophyly and Phylogeny. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6986-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6986-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6988-6

  • Online ISBN: 978-1-4615-6986-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics