Skip to main content

Taurine: An Osmolyte in Mammalian Tissues

  • Chapter
Taurine 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 442))

Abstract

One of the distinctive features of taurine is its presence at high levels in most animal tissues5,3. Although differences exist among cells and species, taurine is consistently found in mM concentrations. It is noteworthy that excitable tissues including brain, striatal muscle and heart contain large, inert, and intracellular taurine pools3,9. The most prominent example in this respect is the retina. In all species so far examined, retinal taurine levels exceed 20 mM and in some species its concentration is as high as 60 mM39. In addition to these high levels, taurine in excitable tissues has a very slow turnover rate. In rat organs, values for taurine turnover rate fit into three main groups: those with a relatively fast rate calculated in less than 1 day and include liver, kidney and pancreas; a second group, with a medium rate of about 2–3 days comprises lung, spleen, intestine, testes, bone marrow and the third group, with the slowest rate of more than 3 days and up to 7 days, is represented by brain, heart and muscle30;.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayes, K.C., Carey, R.E., and Schmidt, S.Y., 1975, Retinal degeneration associated with taurine deficiency in the cat, Science, 188:949–951.

    Article  PubMed  CAS  Google Scholar 

  2. Heilig, C.W., Stromski, M.E., Blumenfeld, J.D., Lee, J.P., and Gullans, S.R., 1989, Characterization of the major brain osmolytes that accumulate in salt-loaded rats, Am. J. Physiol., 257:F1108–F1116.

    PubMed  CAS  Google Scholar 

  3. Huxtable, R.J., 1992, Physiological actions of taurine, Physiol. Rev., 72:101–163.

    PubMed  CAS  Google Scholar 

  4. Huxtable, R.J. and Sebring, L.A., 1983, Cardiovascular actions of taurine, in Prog. Clin. Biol. Res. “Sulfur Amino Acids: Biochemical and Clinical Aspects”, Kuriyama, K., Huxtable, R. J. and Iwata, H., eds., Alan R. Liss, New York, Vol. 125, pp 5–37.

    Google Scholar 

  5. Jacobsen, J.G and Smith, L.H.J., 1968, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev., 48:424–511.

    PubMed  CAS  Google Scholar 

  6. Law, R.O., 1989, Effects of pregnancy on the contents of water, taurine and total amino nitrogen in rat cerebral cortex, J. Neurochem., 53:300–302.

    Article  PubMed  CAS  Google Scholar 

  7. Law, R.O., 1994, Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex, Biochim. Biophys. Acta, 1221:21–28.

    Article  PubMed  CAS  Google Scholar 

  8. Lehmann, A., 1990, Derangements in cerebral homeostasis: a common denominator for stimulation of taurine and phosphoethanolamine release, in Prog. Clin. Biol. Res. “Taurine: Functional Neurochemistry, Physiology and Cardiology”, Pasantes-Morales, H., Martin, D.L., Shain, W. and Del Rio, R.M., eds., Wiley-Liss, Inc., New York, Vol. 351, pp 337–347.

    Google Scholar 

  9. Mandel, P. and Pasantes-Morales, H., 1978, Taurine in nervous tissue, in: “Reviews of Neurosciences”, Ehrenpreis, S. and Kopin, I.J., eds., Raven Press, New York, Vol. 3, pp 157–194.

    Google Scholar 

  10. McManus, M.L. and Churchwell, K.B., 1994, Clinical significance of cellular osmoregulation, in: “Cellular and Molecular Physiology of Cell Volume Regulation”, Strange, K., ed., CRS Press, Boca Raton, pp 63–67.

    Google Scholar 

  11. Minor, T., Yamaguchi, T., Klauke, H., Wingenfeld, P., Michalk, D., and Isselhard, W., 1996, Taurine reduces experimental liver injury after cold ischémic preservation and a period of rewashing prior to reperfusion, in Adv. Exp. Med. Biol., “Taurine 2”, Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M. and Baba, A., eds., Plenum Press, New York, Vol. 403, pp 157–161.

    Google Scholar 

  12. Moorman, J.R., Ackerman, S.J., Kowdley, G.C., Griffin, M.P., Mounsey, J.P., Chen, Z., et al., 1995, Unitary anion currents through phospholemman channel molecules, Nature, 377:737–740.

    Article  PubMed  CAS  Google Scholar 

  13. Nagelhus, E.A., Lehmann, A., and Ottersen, O.P., 1993, Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex, Neuroscience, 54:615–631.

    Article  PubMed  CAS  Google Scholar 

  14. Oja, S.S. and Saransaari, P., 1992, Cell volume changes and taurine release in cerebral cortical slices, in Adv. Exp. Med. Biol., “Taurine: Nutritional Value and Mechanisms of Action”, Lombardini, J.B., Schaffer, S.W. and Azuma, J., eds., Plenum Press, New York, Vol. 315, pp 369–374.

    Google Scholar 

  15. Pasantes-Morales, H., 1986, Current concepts on the role of taurine in the retina, in: “Progress in Retinal Research”, Osborne, N. and Chader, G., eds., Pergamon Press, Oxford, Vol. 5, pp 207–229.

    Google Scholar 

  16. Pasantes-Morales, H., 1996, Volume regulation in brain cells: cellular and molecular mechanisms, Met. Brain Dis., 11:187–204.

    Article  CAS  Google Scholar 

  17. Pasantes-Morales, H., Alavéz, S., Sánchez-Olea, R., and Morán, J., 1993, Contribution of organic osmolytes to volume regulation in rat brain cells in culture, Neurochem. Res., 18:445–452.

    Article  PubMed  CAS  Google Scholar 

  18. Pasantes-Morales, H., Chacón, E., Murray, R.A., and Morán, J., 1994, Properties of osmolytes fluxes activated during regulatory volume decrease in cultured cerebellar granule neurons. J. Neurosci. Res., 37:720–727.

    Article  PubMed  CAS  Google Scholar 

  19. Pasantes-Morales, H., Murray, R.A., Lilja, L. and Morán, J., 1994, Regulatory volume decrease in cultured astrocytes, Am. J. Physiol., 266:C165–C171.

    PubMed  CAS  Google Scholar 

  20. Pasantes-Morales, H. and Schousboe, A., 1988, Volume regulation in astrocytes: a role for taurine as osmoeffector, J. Neurosci. Res., 20:505–509.

    Article  CAS  Google Scholar 

  21. Puka, M., Sundell, K., Lazarewicz, J.W., and Lehmann, A., 1991, Species differences in cerebral taurine concentrations correlate with brain water content, Brain Res., 548:267–272.

    Article  PubMed  CAS  Google Scholar 

  22. Roy, G., 1995, Amino acid current through anion channels in cultured human glial cells, J. Membr. Biol. 147:35–44.

    PubMed  CAS  Google Scholar 

  23. Saly, V. and Andrew, R.D., 1993, CA3 neuron excitation and epileptiform discharge are sensitive to osmolarity, J. Neurophysioi, 69:1–9.

    Google Scholar 

  24. Sánchez-Olea, R., Morales-Mulia, M., García, O., and Pasantes-Morales, H., 1996, Chloride channel blockers and polyunsaturated fatty acids similarly inhibit the volume activated pathways for Cl and taurine in cultured cerebellar granule neurons, Am. J. Physiol., 270:C1703–C1708.

    PubMed  Google Scholar 

  25. Sánchez-Olea, R., Morán, J., Martínez, A., and Pasantes-Morales, H., 1993, Volume-activated Rb transport in astrocytes in culture, Am. J. Physiol., 33:C836–C842.

    Google Scholar 

  26. Sánchez-Olea, R., Morán, J., and Pasantes-Morales, H., 1992, Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes, J. Neurosci. Res., 32:86–92.

    Article  PubMed  Google Scholar 

  27. Sánchez-Olea, R., Morán, J., Schousboe, A., and Pasantes-Morales, H., 1991, Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion, Neurosci. Lett., 130:233–236.

    Article  PubMed  Google Scholar 

  28. Shuller-Levis, G., Quinn, M.R., Wright, C., and Park, E., 1994, Taurine protects against oxidant-induced lung injury: possible mechanism(s) of action, in Prog. Clin. Biol. Res. “Taurine: Functional Neurochemistry, Physiology and Cardiology”, Pasantes-Morales, H., Martin, D.L., Shain, W. and Del Rio, R.M., eds., Willey-Liss, Inc., New York, Vol. 351, pp 31–39.

    Google Scholar 

  29. Solís, J.M., Herranz, A.S., Herreras, O., Lerma, J., and Martin del Río, R., 1988, Does taurine act as an osmoregulatory substance in the rat brain?, Neurosci. Lett., 91:53–58.

    Article  PubMed  Google Scholar 

  30. Spaeth, D.G. and Schneider, D.L., 1974, Turnover of taurine in rat tissues, J. Nutr., 104:179–186.

    PubMed  CAS  Google Scholar 

  31. Strange, K., Emma, F., and Jackson, P.S., 1996, Cellular and molecular physiology of volume-sensitive anion channels, Am. J. Physiol., 270:C711–C730.

    PubMed  CAS  Google Scholar 

  32. Tatsumi, T., Matoba, S., Kawahara, A., Kobara, M., et al., 1996, Cardioprotective effect of taurine on calcium paradox in streptozotocin-induced diabetic rat hearts, in Adv. Exp. Med. Biol., “Taurine 2”, Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M. and Baba, A., eds., Plenum Press, New York, Vol. 403, pp 539–549.

    Google Scholar 

  33. Thurston, J.H., Hauhart, R.E., and Dirco, J.A., 1980, Taurine: a role in osmotic regulation in mammalian brain and possible clinical significance, Life Sci., 26:1561–1568.

    Article  PubMed  CAS  Google Scholar 

  34. Trachtman, H., 1992, Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II, Pediatr. Nephrol, 6:104–112.

    Article  PubMed  CAS  Google Scholar 

  35. Trachtman, H., Barbour, R., Sturman, J.A., and Finberg, L., 1988, Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration, Pediatr. Res., 23:35–39.

    Article  PubMed  CAS  Google Scholar 

  36. Uchida, S., MooKwon, H., Yamauchi, A., Preston, A.S., Marumo, F., and Haudler, J.S., 1992, Molecular cloning of the cDNA for an MDCK cell Na+ and Cl--dependent taurine transporter that is regulated by hypertonicity, Proc. Natl. Acad. Sci., 89:8230–8234.

    Article  PubMed  CAS  Google Scholar 

  37. van Gelder, N.M., Neuronal discharge hypersyncrony and the intracranial water balance in relation to glutamic acid and taurine redistribution: migraine and epilepsy, in Prog. Clin. Biol. Res. “Taurine: Functional Neurochemistry, Physiology and Cardiology”, Pasantes-Morales, H., Martin, D.L., Shain, W. and Del Rio, R.M., eds., Willey-Liss, Inc., New York, Vol. 351, pp 1-20.

    Google Scholar 

  38. Verbalis, J.G. and Gullans, S.R., 1991, Hyponatremia causes large sustained reduction in brain content of multiple organic osmolytes in rats, Brain Res., 567:274–282.

    Article  PubMed  CAS  Google Scholar 

  39. Voaden, M.J., Draedn, A.C.I., Marshall, J., and Lake, N., 1981, Taurine in the retina, in: “The Effects of Taurine on Excitable Tissues”, Schaffer, S.W., Baskin, S.I., and Kocsis, J.J., eds., Spectrum Press, New York, pp 145–160.

    Chapter  Google Scholar 

  40. Wingenfeld, P., Michalk, D., Sonntag, A., Paas, S., Minor, T., and Isselhard, W., 1996, Protective effect of taurine on hypoxia and reoxygenation-induced damage of human colon cells (HT29), in Adv. Exp. Med. Biol., “Taurine 2”, Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M. and Baba, A., eds., Plenum Press, New York, Vol. 403, pp 214–222.

    Google Scholar 

  41. Wingenfeld, P., Strübind, S., Gehrmann, U., Minor, T., Isselhard, W., and Michalk, D., 1994, Protective effect of taurine against hypoxic cell damage in renal tubular cells cultured in different transplant preservation solutions, in Prog. Clin. Biol. Res. “Taurine: Functional Neurochemistry, Physiology and Cardiology”, Pasantes-Morales, H., Martín, D.L., Shain, W. and Del Río, R.M., eds., Willey-Liss, Inc., New York, Vol. 351, pp 159–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pasantes-Morales, H., Quesada, O., Morán, J. (1998). Taurine: An Osmolyte in Mammalian Tissues. In: Schaffer, S., Lombardini, J.B., Huxtable, R.J. (eds) Taurine 3. Advances in Experimental Medicine and Biology, vol 442. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0117-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0117-0_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0119-4

  • Online ISBN: 978-1-4899-0117-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics