Skip to main content

Huntington’s Disease Case Study

  • Chapter
  • First Online:
Physician's Field Guide to Neuropsychology

Abstract

Huntington’s disease is a devastating and complex disease that deeply impacts patients and their families. Changes in basic health, cognition, and personality tax patients, families, and caregivers. A collaborative team approach involving neuropsychologists and medical providers offering comprehensive evaluation and treatment in collaboration with patients and families enhances care of those with Huntington’s disease (HD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun M, Tupper D, Kaufman P, et al. Neuropsychological assessment: a valuable tool in the diagnosis and management of neurological, neurodevelopmental, medical, and psychiatric disorders. Cogn Behav Neurol. 2011;24(3):107.

    Article  Google Scholar 

  2. Troster A, editor. Clinical neuropsychology and cognitive neurology of Parkinson’s disease and other movement disorders. New York, NY: Oxford University Press; 2015.

    Google Scholar 

  3. Paulsen JS, Langbehn DR, Stout JC, et al PREDICT-HD Investigators and Coordinators of the Huntington Study Group. Detection of Huntington’s disease decades before diagnosis: the PREDICT-HD study. J Neurol Neurosurg Pyschiatry 2008;79:874-880.

    Google Scholar 

  4. Pringsheim T, Wiltshire K, Day L, et al. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord. 2012;27(9):1083–91.

    Article  Google Scholar 

  5. Harper PS. The epidemiology of Huntington’s disease. Hum Genet. 1992;89:365–76.

    Article  CAS  Google Scholar 

  6. Vaccarino AL, Sills T, Anderson K, et al. Assessment of cognitive symptoms in prodromal and Huntington disease. PLoS Curr. 2011;25(3):RRN 1250.

    Google Scholar 

  7. Stout JC. (2011). Neurocognitive signs in prodromal Huntington disease. Neuropsychology. 2011;25(1):1–14.

    Article  Google Scholar 

  8. MacLeod R, Tibben A, Frontali M, et al. Recommendations for the predictive genetic test in Huntington’s disease. Clin Genet. 2013;83:221–31.

    Article  CAS  Google Scholar 

  9. Bates GP, MacDonald ME, Baxendale S, et al. Defined physical limits of the Huntington disease gene candidate region. Am J Hum Genet. 1991;49:7–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wexler NS, Rose EA, Housman DE. Molecular approaches to hereditary diseases of the nervous system. Annu Rev Neurosci. 1991;14:503–29.

    Article  CAS  Google Scholar 

  11. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–83.

    Article  Google Scholar 

  12. Kremer B, Goldberg P, Andrew SE, et al. A worldwide study of the Huntington’s disease mutation: the sensitivity and specificity of measuring CAG repeats. N Engl J Med. 1994;330:1401–6.

    Article  CAS  Google Scholar 

  13. Rubinsztein DC, Leggo J, Coles R, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet. 1996;59:16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Killoran A, Biglan KM, Jankovic J, et al. Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS. Neurology. 2013;80:2022–7.

    Article  CAS  Google Scholar 

  15. Maat-Kievet A, Losekoot M, Van den Boer-Van den Berg H, et al. New problems in testing for Huntington’s disease: the issue of intermediate and reduced penetrance alleles. J Med Genet. 2001;38:E12.

    Google Scholar 

  16. Potter NT, Spector EB, Prior TW. Technical standards and guidelines for Huntington disease testing. Genet Med. 2004;6:61–5.

    Article  Google Scholar 

  17. Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4:387–92.

    Article  CAS  Google Scholar 

  18. Brinkman RR, Mezei MM, Theilman J, Almqvist E, Hayden MR. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet. 1997;60:1202–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Langbehn DR, Brinkman RR, Falush D, et al. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet. 2004 Apr;65(4):267–77.

    Article  CAS  Google Scholar 

  20. Rosenblatt A, Kumar BV, Mo A, et al. Age, CAG repeat length, and clinical progression in Huntington’s disease. Mov Disord. 2012;27(2):272–6.

    Article  Google Scholar 

  21. Aylward EH, Nopoulos PC, Ross CA, et al. Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry. 2011;82:405–10.

    Article  Google Scholar 

  22. Dominguez DJF, Egan GF, Gray MA, et al. Multi-modal neuroimaging in premanifest and early Huntington’s disease: 18-month longitudinal data from the IMAGE-HD study. PLoS One. 2013;8(9):e74131.

    Article  Google Scholar 

  23. Aylward EH, Rosenblatt A, Field K, et al. Caudate volume as an outcome measure in clinical trials for Huntington’s disease: a pilot study. Brain Res Bull. 2003;62:137–41.

    Article  CAS  Google Scholar 

  24. Paulsen JS, Smith MM, Long JD. Cognitive decline in prodromal Huntington disease: implications for clinical trials. J Neurol Neurosurg Psychiatry. 2013;84(11):1233–9.

    Article  Google Scholar 

  25. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  Google Scholar 

  26. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a Brief Screening Tool for Mild Cognitive Impairment. J Am Geriatr Soc. 2005;53(4):695–9.

    Article  Google Scholar 

  27. Haaland KY, Dum RP, Mutha PK, Strick PL, Troster AI. The neuropsychology of movement and movement disorders: neuroanatomical and cognitive considerations. J Int Neuropsychol Soc. 2017;23:768–77.

    Article  Google Scholar 

  28. Duff K, Paulsen JS, Mills J, et al; PREDICT-HD Investigators and Coordinators of the Huntington Study Group. Mild cognitive impairment in prediagnosed Huntington disease. Neurology. 2010;75(6):500-507.

    Article  CAS  Google Scholar 

  29. Montoya A, Price BH, Menear M, Lepage M. Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci. 2006;31(1):21–9.

    PubMed  PubMed Central  Google Scholar 

  30. Chen JJ, Salat DH, Rosas HD. Complex relationships between cerebral blood flow and brain atrophy in early Huntington’s disease. Neuroimage. Jan 2018;59(2):1043–51.

    Article  Google Scholar 

  31. Paradiso S, Turner BM, Paulsen JS, Jorge R, Ponto LL, Robinson RG. Neural bases of dysphoria in early Huntington’s disease. Psychiatry Res. 2008;162(1):73–87.

    Article  Google Scholar 

  32. Alosco ML, Gunstad J, Jerskey BA, et al. The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease. Brain Behav. 2013;3(6):626–36.

    Article  Google Scholar 

  33. Beglinger LJ, Nopoulos PC, Jorge RE, et al. White matter volume and cognitive dysfunction in early Huntington’s disease. Cogn Behav Neurol. 2005;18:102–7.

    Article  Google Scholar 

  34. McColgan P, Seunarine KK, Gregory S, et al. Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington’s disease. JCI Insight. 2017;2(8):e92641.

    Article  Google Scholar 

  35. Dominguez JF, Poudel G, Stout J, et al. Longitudinal changes in the fronto-striatal network are associated with executive dysfunction and behavioral dysregulation in Huntington’s disease: 30 months IMAGE-HD data. Cortex. 2017;92:139–49.

    Article  Google Scholar 

  36. Bonner-Jackson A, Long JD, Westerveld H, et al. Cognitive reserve and brain reserve in prodromal Huntington’s disease. J Int Neuropsychol Soc. 2013;19:739–50.

    Article  Google Scholar 

  37. Zhang Y, Long JD, Mills JA, Warner JH, Lu W, Paulsen; and PREDICT-HD Investigators and Coordinators of the Huntington Study Group. Indexing disease progression at study entry with individuals at risk for Huntington disease. Am J Med Genet B Neuropsychiatr Genet. 2011;156(7):751-763.

    Google Scholar 

  38. Harrington DL, Smith MM, Zhang Y, Carlozzi NE, Paulsen JS; PREDICT-HD Investigators of the Huntington Study Group. Cognitive domains that predict time to diagnosis in prodromal Huntington disease. J Neurol Neurosurg Psychiatry. 2012;83:612-619.

    Article  Google Scholar 

  39. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtis G. Wisconsin card sort test: manual, revised and expanded. Psychological Assessment Resources; 1993.

    Google Scholar 

  40. Delis DC, Kaplan E, Kramer JH. Delis-Kaplan Executive Function System (D-KEFS) Examiner’s Manual. San Antonio, TX: The Psychological Corporation; 2001.

    Google Scholar 

  41. Meyers JE, Meyers K. RCFT: Rey complex figure test and recognition trial, professional manual. Psychological Assessment Resources; 1995.

    Google Scholar 

  42. Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York, NY: Springer; 2009.

    Book  Google Scholar 

  43. Ho AK, Sahakian BJ, Brown RG, et al. Profile of cognitive progression in early Huntington’s disease. Neurology. 2003;61:1702–6.

    Article  CAS  Google Scholar 

  44. Papp KV, Snyder PJ, Mills JA, et al. Measuring executive dysfunction longitudinally and in relation to genetic burden, brain volumetrics, and depression in prodromal Huntington disease. Arch Clin Neuropsychol. 2013;28:156–68.

    Article  Google Scholar 

  45. Nicoll DR, Pirogovsky E, Woods SP, et al. "Forgetting to remember" in Huntington’s disease: a study of laboratory, semi-naturalistic, and self-perceptions of prospective memory. J Int Neuropsychol Soc. 2014;20:192–9.

    Article  Google Scholar 

  46. Raskin S. Memory for Intentions Screening Test: psychometric properties and clinical evidence. Brain Impairment. 2009;10(1):23–33.

    Article  Google Scholar 

  47. Strange PG. Brain biochemistry and brain disorders. Oxford: Oxford University Press; 1992.

    Google Scholar 

  48. Peavy GM, Jacobson MW, Goldstein JL, et al. Cognitive and functional decline in Huntington’s disease: dementia criteria revisited. Mov Disord. 2010;25(9):1163–9.

    Article  Google Scholar 

  49. Smith A. Symbol digit modalities test manual. Western Psychological Services; 1982.

    Google Scholar 

  50. Paulsen JS, Butters N, Sadek JR, et al. Distinct cognitive profiles of cortical and subcortical dementia in advanced illness. Neurology. 1995;45(5):951–6.

    Article  CAS  Google Scholar 

  51. Ferm U, Sahlin A, Sundin L, Hartelius L. Using Talking Mats to support communication in personals with Huntington’s disease. Int J Lang Commun Disord. 2010;45(5):523–36.

    Article  Google Scholar 

  52. Snowden JS, Craufurd D, Thompson J, Neary D. Psychomotor, executive, and memory function in preclinical Huntington’s disease. J Clin Exp Neuropsychol. 2002;24(2):133–45.

    Article  CAS  Google Scholar 

  53. Snowden JS, Austin NA, Sembi S, Thompson JC, Craufurd D, Neary D. Emotion recognition in Huntington’s disease and frontotemporal dementia. Neuropsychologia. 2008;46(11):2638–49.

    Article  CAS  Google Scholar 

  54. Grace J, Mallory P. FrSBe, Frontal Systems Behavior Scale: professional manual. Psychological Assessment Resources; 2001.

    Google Scholar 

  55. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment: 5th edition. Oxford Press; 2012.

    Google Scholar 

  56. Stern Y. Cognitive reserve. Neuropsychologica. 2009;47(10):2015–28.

    Article  Google Scholar 

  57. Koffler S, Morgan J, Baron IS, Greiffenstein MF. (eds) Neuropsychology: science and practice, I. Oxford Press; 2013.

    Google Scholar 

  58. Ionis Pharmaceuticals (2017). Dose-dependent reductions of mutant huntingtin protein observed; Ionis earns $45 million license fee. Press release of 11 December 2017. ir.ionispharma.com/news-releases. Accessed 25 Jan 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanders, K.M., Burdick, D.J. (2019). Huntington’s Disease Case Study. In: Sanders, K. (eds) Physician's Field Guide to Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8722-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8722-1_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8720-7

  • Online ISBN: 978-1-4939-8722-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics