Skip to main content

Human Cannabinoid Pharmacokinetics and Interpretation of Cannabinoid Concentrations in Biological Fluids and Tissues

  • Chapter
Marijuana and the Cannabinoids

Abstract

Pharmacokinetics is the study of the absorption, distribution, metabolism, and elimination of a drug in the body and how these processes change with time. Following controlled drug administration, scientists monitor the drug and its metabolites in bodily fluids and tissues to develop a pharmacokinetic profile for the animal or human being studied. After years of research, scientists have learned some important general principles about pharmacokinetic profiles. One is that, in general, pharmacokinetic profiles are similar for most animals and humans, but specific elements of the disposition of a drug in the body can differ greatly between species and between subjects within a species. Another principle is that helpful models can be developed that characterize a drug’s pharmacokinetics and define parameters to describe processes such as time to peak and maximum concentrations, half-lives, volumes of distribution, and so on. Measuring these pharmacokinetic parameters facilitates comparison between and within human subjects who are examined at different times following administration of a drug. As specific examples in this chapter will convey, it is important to conduct carefully controlled studies and astutely note inter- and intrasubject similarities and differences in pharmacokinetic parameters to build databases that can be used to answer real life questions. The third principle that we will consider is that pharmacokinetic profiles change with the route of drug administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huestis, M. A. (2002) Cannabis (marijuana)-effects on human behavior and performance, in The Effects of Drugs on Human Performance and Behavior (Farrell, L. J., Logan, B. K., and Dubowski, K. M., eds.), Central Police University Press, Taipei, pp. 15–60.

    Google Scholar 

  2. Grotenhermen, F. (2003) Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 42, 327–360.

    PubMed  CAS  Google Scholar 

  3. Turner, C. E., ElSohly, M. A., and Boeren, E. G. (1980) Constituents of Cannabis sativa L. XVII. a review of the natural constituents. J. Nat. Products 43, 169–234.

    CAS  Google Scholar 

  4. Turner, C.E., Hadley, K. W., Fetterman, P. S., Doorenbos, N. J., Quimby, M. W., and Waller, C. (1973) Constituents of Cannabis sativa L. IV: Stability of cannabinoids in stored plant material. J. Pharm. Sci. 62, 1601–1605.

    PubMed  CAS  Google Scholar 

  5. Turner, C. E., Bouwsma, O. J., Billets, S., and ElSohly, M. A. (1980) Constituents of Cannabis sativa L. XVIII-electron voltage selected ion monitoring study of cannabinoids. Biomed. Mass Spectrom. 7, 247–256.

    PubMed  CAS  Google Scholar 

  6. Turner, C. E. (1983) Cannabis: the plant, its drugs, and their effects. Aviat. Space Environ. Med. 54, 363–368.

    PubMed  CAS  Google Scholar 

  7. ElSohly, H. N., Boeren, E. G., Turner, C. E., and ElSohly, M. A. (1984) Constituents of Cannabis sativa L. XXIIII: Cannabitetrol, a new Polyhydroxylated cannabinoid, in The Cannabinoids: Chemical, Pharmacologic and Therapeutic Aspects (Agurell, S., Dewey, W. L., and Willette, R. E., eds.), Academic Press, Inc., Orlando, FL, pp. 89–96.

    Google Scholar 

  8. Turner, C. E., Hadley, K., and Fetterman, P. S. (1973) Constituents of Cannabis sativa L. VI: Propyl homologs in samples of known geographical origin. J. Pharm. Sci. 62, 1739–1741.

    PubMed  CAS  Google Scholar 

  9. Hemphill, J. K., Turner, J. C., and Mahlberg, P. G. (1980) Cannabinoid content of individual plant organs from different geographical strains of Cannabis sativa L. J. Nat. Products 43 (1), 112–122.

    CAS  Google Scholar 

  10. Iversen, L. (2003) Cannabis and the brain. Brain 26, 252–1270.

    Google Scholar 

  11. Roth, M. D., Baldwin, G. C., and Tashkin, D. P. (2002) Effects of delta-9-tetrahydrocannabinol on human immune function and host defense. CPL 121, 229–239.

    CAS  Google Scholar 

  12. Salmeron, B. J. and Stein, E. A. (2002) Pharmacological applications of magnetic resonance imaging. Psychopharmacol. Bull. 36, 102–129.

    PubMed  Google Scholar 

  13. Mathew, R. J., Wilson, W. H., Turkington, T. G., et al. (2002) Time course of tetrahydrocannabinol-induced changes in regional cerebral blood flow measured with positron emission tomography. Psychiatry Res. Neuroimaging 116, 173–185.

    CAS  Google Scholar 

  14. Kumar, R. N., Chambers, W. A., and Pertwee, R. G. (2001) Pharmacological actions and therapeutic uses of Cannabis and cannabinoids. Anaesthesia 56, 1059–1068.

    PubMed  CAS  Google Scholar 

  15. Pertwee, R. G. (2002) Cannabinoids and multiple sclerosis. Pharmacol. Ther. 95, 165–174.

    PubMed  CAS  Google Scholar 

  16. Mechoulam, R. and Hanu, L. (2001) The cannabinoids: an overview. Therapeutic implications in vomiting and nausea after cancer chemotherapy, in appetite promotion, in multiple sclerosis and in neuroprotection. Pain Res. Manag. 6, 67–73.

    PubMed  CAS  Google Scholar 

  17. Baker, D., Pryce, G., Giovannoni, G., and Thompson, A.J. (2003) The therapeutic potential of Cannabis. Lancet Neurol. 2, 291–298.

    PubMed  CAS  Google Scholar 

  18. Ross, S. A., Mehmedic, Z., Murphy, T. P., and ElSohly, M. A. (2000) GC-MS analysis of the total delta-9-THC content of both drug-and fiber-type Cannabis seeds. J. Anal. Toxicol. 24, 715–717.

    PubMed  CAS  Google Scholar 

  19. Pitts, J. E., Neal, J. D., and Gough, T. A. (1992) Some features of Cannabis plants grown in the United Kingdom from seeds of known origin. J. Pharm. Pharmacol. 44, 947–951.

    PubMed  CAS  Google Scholar 

  20. ElSohly, M. A., Ross, S. A., Mehmedic, Z., Arafat, R., Yi, B., and Banahan, B. F. III (2000) Potency trends of delta-9-THC and other cannabinoids in confiscated marijuana from 1980-1997. J. Forensic Sci. 45, 24–30.

    PubMed  CAS  Google Scholar 

  21. Drug Enforcement Administration (2003) Illegal drug price and purity report. DEA-02058 April, 1–16.

    Google Scholar 

  22. Claussen, U. and Korte, F. (1968) Concerning the behavior of hemp and of delta-9-6a, 10atrans-tetrahydrocannabinol in smoking. Justus Liebigs. Ann. Chem. 713, 162–165.

    PubMed  CAS  Google Scholar 

  23. Abrams, R. M., Davis, K. H., Jaeger, M. J., and Szeto, H.H. (1985) Marijuana smoke production and delivery system, in Marihuana’ 84 Proceedings of the Oxford Symposium on Cannabis (Harvey, D. J., Paton, S. W., and Nahas, G. G., eds.), IRL Press Limited, Oxford, pp. 205–209.

    Google Scholar 

  24. Davis, K. H., McDaniel, I. A., Cadwell, L. W., and Moody, P. L. (1984) Some smoking characteristics of marijuana cigarettes, in The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects (Agurell, S., Dewey, W. L., and Willette, R. E., eds.), Academic Press, Orlando, FL, pp 97–109.

    Google Scholar 

  25. Ohlsson, A., Lindgren, J. E., Wahlen, A., Agurell, S., Hollister, L. E., and Gillespie, H.K. (1980) Plasma delta-9-tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin. Pharmacol. Ther. 28, 409–416.

    PubMed  CAS  Google Scholar 

  26. Agurell, S., Halldin, M., Lindgren, J. E., et al. (1986) Pharmacokinetics and metabolism of delta1-tetrahydrocannabinol and other cannabinoids with emphasis on man. Pharmacol. Rev. 38, 21–43.

    PubMed  CAS  Google Scholar 

  27. Azorlosa, J. L., Heishman, S. J., Stitzer, M. L., and Mahaffey, J. M. (1992) Marijuana smoking: effect of varying delta 9-tetrahydrocannabinol content and number of puffs. J. Pharmacol. Exp. Ther. 261(1), 114–122.

    PubMed  CAS  Google Scholar 

  28. Heishman, S. J., Stitzer, M. L., and Yingling, J. E. (1989) Effects of tetrahydrocannabinol content on marijuana smoking behavior, subjective reports, and performance. Pharmacol. Biochem. Behav. 34, 173–179.

    PubMed  CAS  Google Scholar 

  29. Tinklenberg, J. R., Melges, F. T., Hollister, L. E., and Gillespie, H. K. (1970) Marijuana and immediate memory. Nature 226, 1171–1172.

    PubMed  CAS  Google Scholar 

  30. Huestis, M. A., Henningfield, J. E., and Cone, E. J. (1992) Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J. Anal. Toxicol. 16, 276–282.

    PubMed  CAS  Google Scholar 

  31. Mason, A. P. and McBay, A. J. (1984) Ethanol, marijuana, and other drug use in 600 drivers killed in single-vehicle crashes in North Carolina, 1978-1981. J. Forensic Sci. 29, 987–1026.

    PubMed  CAS  Google Scholar 

  32. Law, B., Mason, P. A., Moffat, A. C., Gleadle, R. I., and King, L. J. (1984) Forensic aspects of the metabolism and excretion of cannabinoids following oral ingestion of Cannabis resin. J. Pharm. Pharmacol. 36, 289–294.

    PubMed  CAS  Google Scholar 

  33. Ohlsson, A., Lindgren, J. E., Wahlen, A., Agurell, S., Hollister, L. E., and Gillespie, H.K. (1981) Plasma levels of delta-9-tetrahydrocannabinol after intravenous, oral and smoke administration. NIDA Monograph 34, 250–256.

    CAS  Google Scholar 

  34. Wall, M. E., Sadler, B. M., Brine, D., Taylor, H., and Perez-Reyes, M. (1983) Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin. Pharmacol. Ther. 34, 352–363.

    PubMed  CAS  Google Scholar 

  35. Perez-Reyes, M., Timmons, M. C., Davis, K. H., and Wall, E. M. (1973) A comparison of the pharmacological activity in man of intravenously administered delta-9-tetrahydrocannabinol, cannabinol and cannabidiol. Experientia 29, 1368–1369.

    PubMed  CAS  Google Scholar 

  36. Hunt, C. A. and Jones, R. T. (1980) Tolerance and disposition of tetrahydrocannabinol in man. J. Pharmacol. Exp. Ther. 215, 35–44.

    PubMed  CAS  Google Scholar 

  37. Kelly, P. and Jones, R. T. (1992) Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. J. Anal. Toxicol. 16, 228–235.

    PubMed  CAS  Google Scholar 

  38. Harvey, D. J. (2001) Absorption, distribution, and biotransformation of the cannabinoids, in Marijuana and Medicine (Nahas, G. G., Sutin, K. M., Harvey, D. J., and Agurell, S., eds.), Humana Press, Totowa, NJ, pp. 91–103.

    Google Scholar 

  39. Johansson, E., Noren, K., Sjovall, J., and Halldin, M. M. (1989) Determination of delta-1-tetrahydrocannabinol in human fat biopsies from marihuana users by gas chromatography-mass spectrometry. Biomed. Chromatogr. 3, 35–38.

    PubMed  CAS  Google Scholar 

  40. Kreuz, D. S. and Axelrod, J. (1973) Delta-9-tetrahydrocannabinol: localization in body fat. Science 179, 391–393.

    PubMed  CAS  Google Scholar 

  41. Johansson, E., Agurell, S., Hollister, L. E., and Halldin, M. M. (1988) Prolonged apparent half-life of delta-1-tetrahydrocannabinol in plasma of chronic marijuana users. J. Pharm. Pharmacol. 40, 374–375.

    PubMed  CAS  Google Scholar 

  42. Iribarne, C., Berthou, F., Baird, S., et al. (1996) Involvement of cytochrome P450 3A4 enzyme in the N-demethylation of methadone in human liver microsomes. Chem. Res. Toxicol. 9, 365–373.

    PubMed  CAS  Google Scholar 

  43. Matsunaga, T., Iwawaki, Y., Watanabe, K., Yamamoto, I., Kageyama, T., and Yoshimura, H. (1995) Metabolism of delta-9-tetrahydrocannabinol by cytochrome P450 isozymes purified from hepatic microsomes of monkeys. Life Sci. 56, 2089–2095.

    PubMed  CAS  Google Scholar 

  44. Lemberger, L., Silberstein, S. D., Axelrod, J., and Kopin, I. J. (1970) Marihuana: studies on the disposition and metabolism of delta-9-tetrahydrocannabinol in man. Science 170, 1320–1322.

    PubMed  CAS  Google Scholar 

  45. Ben-Zvi, Z., Bergen, J. R., Burstein, S., Sehgal, P. K., and Varanelli, C. (1976) The metabolism of delta-tetrahydrocannabinol in the rhesus monkey, in The Pharmacology of Marihuana (Braude, M. C. and Szara, S., eds.), Raven Press, New York, pp. 63–75.

    Google Scholar 

  46. Greene, M. L. and Saunders, D. R. (1974) Metabolism of tetrahydrocannabinol by the small intestine. Gastroenterology 66, 365–372.

    PubMed  CAS  Google Scholar 

  47. Krishna, D. R. and Klotz, U. (1994) Extrahepatic metabolism of drugs in humans. Clin. Pharmacokinet. 26, 144–160.

    PubMed  CAS  Google Scholar 

  48. Watanabe, K., Tanaka, T., Yamamoto, I., and Yoshimura, H. (1988) Brain microsomal oxidation of delta-8-and delta-9-tetrahydrocannabinol. Biochem.and Biophys. Res. Commun. 157, 75–80.

    CAS  Google Scholar 

  49. Widman, M., Nordqvist, M., Dollery, C. T., and Briant, R. H. (1975) Metabolism of delta-1-tetrahydrocannabinol by the isolated perfused dog lung. Comparison with in vitro liver metabolism. J. Pharm. Pharmacol. 27, 842–848.

    PubMed  CAS  Google Scholar 

  50. Harvey, D. J. and Paton, W. D. M. (1984) Metabolism of the cannabinoids. Rev. Biochem. Toxicol. 6, 221–264.

    CAS  Google Scholar 

  51. Mechoulam, R., BenZvi, Z., Agurell, S., et al. (1973) Delta-6 tetrahydrocannabinol-7-oic acid, a urinary delta-6-THC metabolite: isolation and synthesis. Experientia 29, 1193–1195.

    PubMed  CAS  Google Scholar 

  52. Sporkert, F., Pragst, F., Ploner, C. J., Tschirch, A., and Stadelmann, A. M. (2001) Pharmacokinetic investigations and delta-9-tetrahydrocannabinol and its metabolites after single administration of 10 mg Marinol in attendance of a psychiatric study. The Annual Meeting of The International Association of Forensic Toxicologists, Prague, Czech Republic, Abstract P62.

    Google Scholar 

  53. Halldin, M. M., Widman, M., Bahr, C. V., Lindgren, J. E., and Martin, B. R. (1982) Identification of in vitro metabolites of delta 1-tetrahydrocannabinol formed by human livers. Drug Metab. Dispos. 10, 297–301.

    PubMed  CAS  Google Scholar 

  54. Garrett, E. R. and Hunt, C. A. (1977) Pharmacokinetics of delta-9-tetrahydrocannabinol in dogs. J. Pharm. Sci. 66, 395–407.

    PubMed  CAS  Google Scholar 

  55. Williams, P. L. and Moffat, A. C. (1980) Identification in human urine of delta-9-tetrahydrocannabinol-11-oic glucuronide: a tetrahydrocannabinol metabolite. J. Pharm. Pharmacol. 32, 445–448.

    PubMed  CAS  Google Scholar 

  56. Huestis, M. A., Mitchell, J. M., and Cone, E. J. (1996) Urinary excretion profiles of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in humans after single smoked doses of marijuana. J. Anal. Toxicol. 20, 441–452.

    PubMed  CAS  Google Scholar 

  57. Huestis, M. A. and Cone, E. J. (1998) Urinary excretion half-life of 11-nor-9-carboxydelta-9-tetrahydrocannabinol in humans. Ther. Drug Monit. 20, 570–576.

    PubMed  CAS  Google Scholar 

  58. Johansson, E. and Halldin, M. M. (1989) Urinary excretion half-life of delta 1-tetrahydrocannabinol-7-oic acid in heavy marijuana users after smoking. J. Anal. Toxicol. 13, 218–223.

    PubMed  CAS  Google Scholar 

  59. Cone, E. J., Johnson, R. E., Paul, B. D., Mell, L. D., and Mitchell, J. (1988) Marijuanalaced brownies: Behavioral effects, physiologic effects, and urinalysis in humans following ingestion. J. Anal. Toxicol. 12, 169–175.

    PubMed  CAS  Google Scholar 

  60. Gustafson, R. A., Levine, B., Stout, P. R., et al. (2003) Urinary cannabinoid detection times after controlled oral administration of delta-9-tetrahydrocannabinol to humans. Clin. Chem. 49, 1114–1124.

    PubMed  CAS  Google Scholar 

  61. Kemp, P. M., Abukhalaf, I. K., Manno, J. E., et al. (1995) Cannabinoids in humans. II. The influence of three methods of hydrolysis on the concentration of THC and two metabolites in urine. J. Anal. Toxicol. 19, 292–298.

    PubMed  CAS  Google Scholar 

  62. Mason, A. P. and McBay, A. J. (1985) Cannabis: pharmacology and interpretation of effects. J. Forensic Sci. 30, 615–631.

    PubMed  CAS  Google Scholar 

  63. Moskowitz, H. (1985) Marijuana and driving. Accid. Anal. Prev. 17, 323–345.

    PubMed  CAS  Google Scholar 

  64. Kurzthaler, I., Hummer, M., Miller, C., et al. (1999) Effect of Cannabis use on cognitive functions and driving ability. J. Clin. Psychiatry 60, 395–399.

    PubMed  CAS  Google Scholar 

  65. Ramaekers, J. G., Berghaus, G., van Laar, M., and Drummer, O. H. (2004) Dose related risk of motor vehicle crashes after Cannabis use. Drug Alcohol Depend. 73, 109–119.

    PubMed  CAS  Google Scholar 

  66. O’Kane, C. J., Tutt, D. C., and Bauer, L. A. (2002) Cannabis and driving: a new perspective. Emerg. Med. 14, 296–303.

    Google Scholar 

  67. Lukas, S. E. and Orozco, S. (2001) Ethanol increases plasma delta-9-tetrahydrocannabinol (THC) levels and subjective effects after marihuana smoking in human volunteers. Drug Alcohol Depend. 64, 143–149.

    PubMed  CAS  Google Scholar 

  68. Ramaekers, J. G., Robbe, H. W., and O’Hanlon, J. F. (2000) Marijuana, alcohol and actual driving performance. Hum. Psychopharmacol. 15, 551–558.

    PubMed  Google Scholar 

  69. Huestis, M. A., Sampson, A. H., Holicky, B. J., Henningfield, J. E., and Cone, E. J. (1992) Characterization of the absorption phase of marijuana smoking. Clin. Pharmacol. Ther. 52, 31–41.

    PubMed  CAS  Google Scholar 

  70. Huestis, M. A., Henningfield, J. E., and Cone, E. J. (1992) Blood cannabinoids. II. Models for the prediction of time of marijuana exposure from plasma concentrations of delta 9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THCCOOH). J. Anal. Toxicol. 16, 283–290.

    PubMed  CAS  Google Scholar 

  71. Cone, E. J. and Huestis, M. A. (1993) Relating blood concentrations of tetrahydrocan nabinol and metabolites to pharmacologic effects and time of marijuana usage. Ther. Drug Monit. 15, 527–532.

    PubMed  CAS  Google Scholar 

  72. Huestis, M. A., Zigbuo, E., Heishman, S. J., et al. (2002) Determination of time of last exposure following controlled smoking of multiple marijuana cigarettes. Annual Meeting of the Society of Forensic Toxicologists, Dearborn, MI, Abstract 26.

    Google Scholar 

  73. Robbe, H. W. and O’Hanlon, J. F. (1993) Marijuana and Actual Driving Performance, U.S. Department of Transportation/National Highway Traffic Safety Administration Report, November, pp. 1–133.

    Google Scholar 

  74. Drummer, O. H., Gerostamoulos, J., Batziris, H., et al. (2004) The involvement of drugs in drivers of motor vehicles killed in Australian road traffic crashes. Accid. Anal. Prev. 36, 239–248.

    PubMed  Google Scholar 

  75. Wilson, W., Mathew, R., Turkington, T., Hawk, T., Coleman, R. E., and Provenzale, J. (2000) Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J. Addict. Dis. 19, 1–22.

    PubMed  CAS  Google Scholar 

  76. Mathew, R. J., Wilson, W. H., Coleman, R. E., Turkington, T. G., and DeGrado, T. R. (1997) Marijuana intoxication and brain activation in marijuana smokers. Life Sci. 60(23), 2075–2089.

    PubMed  CAS  Google Scholar 

  77. Gatley, S. J., Lan, R., Volkow, N. D., et al. (1998) Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo. J. Neurochem. 70, 417–423.

    PubMed  CAS  Google Scholar 

  78. Evans, S. M., Cone, E. J., and Henningfield, J. E. (1996) Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J. Pharmacol. Exp. Ther. 279, 1345–1356.

    PubMed  CAS  Google Scholar 

  79. Martin, B. R., Mechoulam, R., and Razdan, R. K. (1999) Discovery and characterization of endogenous cannabinoids. Life Sci. 65, 573–595.

    PubMed  CAS  Google Scholar 

  80. Pertwee, R. (1993) The evidence for the existence of cannabinoid receptors. Gen. Pharmacol. 24(4), 811–824.

    PubMed  CAS  Google Scholar 

  81. Devane, W. A., Hanus, L., Breuer, A., et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949.

    PubMed  CAS  Google Scholar 

  82. Mechoulam, R., Shabat, S. B., Hanus, L., et al. (1996) Endogenous cannabinoid ligandschemical and biological studies. J. Lipid Mediators Cell Signal. 14, 45–49.

    CAS  Google Scholar 

  83. Rinaldi-Carmona, M., Barth, F., Heaulme, M., et al. (1995) Biochemical and pharmacological characterization of SR141716A, the first potent and selective brain cannabinoid receptor antagonist. Life Sci. 56, 1941–1947.

    PubMed  CAS  Google Scholar 

  84. Aceto, M. D., Scates, S. M., Lowe, J. A., and Martin, B. R. (1996) Dependence on delta9 tetrahydrocannabinol: studies on precipitated and abrupt withdrawal. J. Pharmacol. Exp. Ther. 278, 1290–1295.

    PubMed  CAS  Google Scholar 

  85. Huestis, M. A., Gorelick, D. A., Heishman, S. J., et al. (2001) Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch. Gen. Psychiatry 58, 322–328.

    PubMed  CAS  Google Scholar 

  86. Cohen, C., Perrault, G., Voltz, C., Steinberg, R., and Soubrie, P. (2002) SR141716, a central cannabinoid (CB1) receptor antagonist, blocks the motivational and dopamine releasing effects of nicotine in rats. Behav. Pharmacol. 13, 451–463.

    PubMed  CAS  Google Scholar 

  87. LeFur, G., Arnone, M., Rinaldi-Carmona, M., Barth, F., and Heshmati, H. (2001) SR141716, a selective antagonist of CB1, receptors and obesity. Annual Meeting of the International Cannabinoid Research Society, El Escorial, Spain, Abstract 101.

    Google Scholar 

  88. Preston, K. L. and Jasinski, D. R. (1991) Abuse liability studies of opioid agonist-antagonists in humans. Drug Alcohol Depend. 28, 49–82.

    PubMed  CAS  Google Scholar 

  89. Huestis, M. A. and Cone, E. J. (1998) Differentiating new marijuana use from residual drug excretion in occasional marijuana users. J. Anal. Toxicol. 22, 445–454.

    PubMed  CAS  Google Scholar 

  90. Lafolie, P., Beck, O., Blennow, G., et al. (1991) Importance of creatinine analyses of urine when screening for abused drugs. Clin. Chem. 37, 1927–1931.

    PubMed  CAS  Google Scholar 

  91. Manno, J. E., Ferslew, K. E., and Manno, B. R. (1984) Urine excretion patterns of cannabinoids and the clinical application of the EMIT-d.a.u. cannabinoid urine assay for substance abuse treatment, in The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects (Agurell, S., Dewey, W. L., and Willette, R. E., eds.), Academic Press, Orlando, FL, pp. 281–290.

    Google Scholar 

  92. Cone, E. J., Lange, R., and Darwin, W. D. (1998) In vivo adulteration: excess fluid inges tion causes false-negative marijuana and cocaine urine test results. J. Anal. Toxicol. 22, 460–473.

    PubMed  CAS  Google Scholar 

  93. Fraser, A. D. and Worth, D. (1999) Urinary excretion profiles of 1 1-nor-9-carboxy-delta-9-tetrahydrocannabinol: a delta-9-THCCOOH to creatinine ratio study. J. Anal. Toxicol. 23, 531–534.

    PubMed  CAS  Google Scholar 

  94. Fraser, A. D. and Worth, D. (2003) Urinary excretion profiles of 1 1-nor-9-corboxy-delta-9-tetrahydrocannabinol: a delta-9-THC-COOH to creatinine ratio study #2. Forensic Sci. Int. 133, 26–31.

    PubMed  CAS  Google Scholar 

  95. Kim, I., Barnes, A. J., Oyler, J. M., et al. (2002) Plasma and oral fluid pharmacokinetics and pharmacodynamics after oral codeine administration Clin. Chem. 48, 1486–1496.

    CAS  Google Scholar 

  96. Just, W. W., Werner, G., Erdmann, G., and Wiechmann, M. (1975) Detection and identification of delta-8-and delta 9-tetrahydrocannabinol in saliva of man and autoradiographic investigation of their distribution in different organs of the monkey. Strahlentherapie-Sonderbande 74, 90–97.

    PubMed  CAS  Google Scholar 

  97. Maseda, C., Hama, K., Fukui, Y., Matsubara, K., Takahashi, S., and Akane, A. (1986) Detection of delta-9-THC in saliva by capillary GC/ECD after marihuana smoking. Forensic Sci. Int. 32, 259–266.

    PubMed  CAS  Google Scholar 

  98. Gross, S. J., Worthy, T. E., Nerder, L., Zimmermann, E. G., Soares, J. R., and Lomax, P. (1985) Detection of recent Cannabis use by saliva delta-9-THC radioimmunoassay. J. Anal. Toxicol. 9, 1–5.

    PubMed  CAS  Google Scholar 

  99. Hawks, R. L. (1984) Developments in cannabinoid analyses of body fluids: implications for forensic applications, in The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects (Agurell, S., Dewey, W., and Willette, R., eds.), Academic Press, Orlando, FL, pp. 123–134.

    Google Scholar 

  100. Huestis, M. A., Dickerson, S., and Cone, E. J. (1992) Can saliva THC levels be correlated to behavior?, in American Academy of Forensic Science Annual Meeting, Fittje Brothers, Colorado Springs, CO, p. 190.

    Google Scholar 

  101. Niedbala, R. S., Kardos, K. W., Fritch, D. F., et al. (2001) Detection of marijuana use by oral fluid and urine analysis following single-dose administration of smoked and oral marijuana. J. Anal. Toxicol. 25, 289–303.

    PubMed  CAS  Google Scholar 

  102. Kintz, P., Cirimele, V., and Ludes, B. (2000) Detection of Cannabis in oral fluid (saliva) and forehead wipes (sweat) from impaired drivers. J. Anal. Toxicol. 24, 557–561.

    PubMed  CAS  Google Scholar 

  103. Samyn, N., De Boeck, G., and Verstraete, A. G. (2002) The use of oral fluid and sweat wipes for the detection of drugs of abuse in drivers. J. Forensic Sci. 47, 1380–1387.

    PubMed  CAS  Google Scholar 

  104. Cone, E. J., Presley, L., Lehrer, M., et al. (2002) Oral fluid testing for drugs of abuse: positive prevalence rates by intercept immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations. J. Anal. Toxicol. 26, 541–546.

    PubMed  CAS  Google Scholar 

  105. Gronholm, M. and Lillsunde, P. (2001) A comparison between on-site immunoassay drug-testing devices and laboratory results. Forensic Sci. Int. 121, 37–46.

    PubMed  CAS  Google Scholar 

  106. Jehanli, A., Brannan, S., Moore, L., and Spiehler, V. R. (2001) Blind trials of an onsite saliva drug test for marijuana and opiates. J. Forensic Sci. 46, 1214–1220.

    PubMed  CAS  Google Scholar 

  107. Samyn, N. and van Haeren, C. (2000) On-site testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. Int. J. Leg. Med. 113, 150–154.

    CAS  Google Scholar 

  108. Yacoubian, G. S., Jr., Wish, E. D., and Perez, D. M. (2001) A comparison of saliva testing to urinalysis in an arrestee population. J. Psychoactive Drugs 33, 289–294.

    PubMed  Google Scholar 

  109. Walsh, J. M., Flegel, R., Crouch, D. J., Cangianelli, L., and Baudys, J. (2003) An evaluation of rapid-point-of-collection oral fluid drug-testing devices. J. Anal. Toxicol. 27, 429–439.

    PubMed  CAS  Google Scholar 

  110. Menkes, D. B., Howard, R. C., Spears, G. F., and Cairns, E. R. (1991) Salivary THC following Cannabis smoking correlates with subjective intoxication and heart rate. Psychopharmacology 103, 277–279.

    PubMed  CAS  Google Scholar 

  111. Steinmeyer, S., Ohr, H., Maurer, H. J., and Moeller, M. R. (2001) Practical aspects of roadside tests for administrative traffic offences in Germany. Forensic Sci. Int. 121, 33–36.

    PubMed  CAS  Google Scholar 

  112. Cone, E. J., Johnson, R. E., Darwin, W. D., et al. (1987) Passive inhalation of marijuana smoke: urinalysis and room air levels of delta-9-tetrahydrocannabinol. J. Anal. Toxicol. 11, 89–96.

    PubMed  CAS  Google Scholar 

  113. Hayden, J. W. (1991) Passive inhalation of marijuana smoke: a critical review. J. Substance Abuse 3, 85–90.

    CAS  Google Scholar 

  114. Mule, S. J., Lomax, P., and Gross, S. J. (1988) Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine. J. Anal. Toxicol. 12, 113–116.

    PubMed  CAS  Google Scholar 

  115. Kidwell, D. A., Holland, J. C., and Athanaselis, S. (1998) Testing for drugs of abuse in saliva and sweat. J. Chromatogr. B Biomed. Sci. Appl. 713, 111–135.

    PubMed  CAS  Google Scholar 

  116. Crouch, D. J., Cook, R. F., Trudeau, J. V., et al. (2001) The detection of drugs of abuse in liquid perspiration. J. Anal. Toxicol. 25, 625–627].

    PubMed  CAS  Google Scholar 

  117. Kintz, P. (1996) Drug testing in addicts: a comparison between urine, sweat, and hair. Ther. Drug Monit. 18, 450–455.

    PubMed  CAS  Google Scholar 

  118. Cone, E. J. (1996) Mechanisms of drug incorporation into hair. Ther. Drug Monit. 18, 438–443.

    PubMed  CAS  Google Scholar 

  119. Borges, C. R., Roberts, J. C., Wilkins, D. G., and Rollins, D. E. (2003) Cocaine, benzoylecgonine, amphetamine, and N-acetylamphetamine binding to melanin subtypes. J. Anal. Toxicol. 27, 125–134.

    PubMed  Google Scholar 

  120. Cone, E. J., Darwin, W. D., and Wang, W. L. (1993) The occurrence of cocaine, heroin and metabolites in hair of drug abusers. Forensic. Sci. Int. 63, 55–68.

    PubMed  CAS  Google Scholar 

  121. Rollins, D. E., Wilkins, D. G., Krueger, G. G., et al. (2003) The effect of hair color on the incorporation of codeine into human hair. J. Anal. Toxicol. 27, 545–551.

    PubMed  CAS  Google Scholar 

  122. Henderson, G. L., Harkey, M. R., Zhou, C., Jones, R. T., and Jacob, P. III (1996) Incorporation of isotopically labeled cocaine and metabolites into human hair: 1. Dose-response relationships. J. Anal. Toxicol. 20, 1–12.

    PubMed  CAS  Google Scholar 

  123. Cone, E. J. (1990) Testing human hair for drugs of abuse. I. Individual dose and time profiles of morphine and codeine in plasma, saliva, urine, and beard compared to druginduced effects on pupils and behavior. J. Anal. Toxicol. 14, 1–7.

    PubMed  CAS  Google Scholar 

  124. Joseph, R. E., Jr., Hold, K. M., Wilkins, D. G., Rollins, D. E., and Cone, E. J. (1999) Drug testing with alternative matrices II. Mechanisms of cocaine and codeine deposition in hair. J. Anal. Toxicol. 23, 396–408.

    PubMed  CAS  Google Scholar 

  125. Kintz, P., Cirimele, V., Jamey, C., and Ludes, B. (2003) Testing for GHB in hair by GC/ MS/MS after a single exposure. Application to document sexual assault. J. Forensic Sci. 48, 195–200.

    PubMed  CAS  Google Scholar 

  126. Miyazawa, N. and Uematsu, T. (1992) Analysis of ofloxacin in hair as a measure of hair growth and as a time marker for hair analysis. Ther. Drug Monit. 14, 525–528.

    PubMed  CAS  Google Scholar 

  127. Baez, H., Castro, M. M., Benaventa, M. A., et al. (2000) Drugs in prehistory: chemical analysis of ancient human hair. Forensic Sci. Int. 108, 173–179.

    PubMed  CAS  Google Scholar 

  128. Springfield, A. C., Cartmell, L. W., Aufderheide, A. C., Buikstra, J., and Ho, J. (1993) Cocaine and metabolites in the hair of ancient Peruvian coca leaf chewers. Forensic. Sci. Int. 63, 269–275.

    PubMed  CAS  Google Scholar 

  129. Goldberger, B. A., Darraj, A. G., Caplan, Y. H., and Cone, E. J. (1998) Detection of methadone, methadone metabolites, and other illicit drugs of abuse in hair of methadonetreatment subjects. J. Anal. Toxicol. 22, 526–530.

    PubMed  CAS  Google Scholar 

  130. Cairns, T., Kippenberger, D. J., and Gordon, A. M. (1997) Hair analysis for detection of drugs of abuse, in Handbook of Analytical Therapeutic Drug Monitoring and Toxicology (Wong, S. H. Y. and Sunshine, I., eds.) CRC Press, New York, pp. 237–251.

    Google Scholar 

  131. Thorspecken, J., Skopp, G., and Potsch, L. (2004) In vitro contamination of hair by marijuana smoke. Clin. Chem. 50, 596–602.

    PubMed  CAS  Google Scholar 

  132. Kintz, P., Cirimele, V., and Mangin, P. (1995) Testing human hair for Cannabis II. Identification of THC-COOH by GC-MS-NCI as a unique proof. J. Forensic Sci. 40, 619–622.

    PubMed  CAS  Google Scholar 

  133. Jurado, C., Menendez, M., Repetto, M., Kintz, P., Cirimele, V., and Mangin, P. (1996) Hair testing for Cannabis in Spain and France: is there a difference in consumption? J. Anal. Toxicol. 20, 111–115.

    PubMed  CAS  Google Scholar 

  134. Cirimele, V., Kintz, P., and Mangin, P. (1995) Testing human hair for Cannabis. Forensic Sci. Int. 70, 175–182.

    PubMed  CAS  Google Scholar 

  135. Cairns, T., Kippenberger, D. J., Scholtz, H., and Baumgartner, W. A. (1995) Determination of carboxy-THC in hair by mass spectrometry, in Hair Analysis in Forensic Toxicology: Proceedings of the 1995 International Conference and Workshop (de Zeeuw, R. A., Al Hosani, I., Al Munthiri, S., and Maqbool, A., eds.), The Organizing Committee of the Conference, Abu Dhabi, pp. 185–193.

    Google Scholar 

  136. Jurado, C. and Sachs, H. (2003) Proficiency test for the analysis of hair for drugs of abuse, organized by the Society of Hair Testing. Forensic Sci. Int. 133, 175–178.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, New Jersey

About this chapter

Cite this chapter

Huestis, M.A., Smith, M.L. (2007). Human Cannabinoid Pharmacokinetics and Interpretation of Cannabinoid Concentrations in Biological Fluids and Tissues. In: ElSohly, M.A. (eds) Marijuana and the Cannabinoids. Forensic Science And Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-947-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-947-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-456-2

  • Online ISBN: 978-1-59259-947-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics