Skip to main content

Multipotent Adult Progenitor Cells

  • Chapter
Stem Cells And Myocardial Regeneration

Abstract

In 2001 the laboratory of Catherine Verfaillie at the University of Minnesota described the multipotent adult progenitor cell (MAPC) as a novel progenitor cell present in adult marrow that is biologically and antigenically distinct from the mesenchymal stem cell (MSC). MAPCs represent a more primitive progenitor cell population than MSCs and demonstrate remarkable differentiation capability along the epithelial, endothelial, neuronal, myogenic, hematopoeitic, osteogenic, hepatic, chondrogenic, and adipogenic lineages. MAPCs thus embody a unique class of adult stem cells that emulate the broad biological plasticity characteristic of embryonic stem (ES) cells, while maintaining the characteristics that make adult stem cells more amenable to therapeutic application. MAPCs have been reported to be capable of prolonged culture without loss of differentiation potential, and of showing efficient, long-term engraftment and differentiation along multiple developmental lineages in nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice without evidence of teratoma formation. Based on these findings, there is great interest in evaluating the therapeutic value of MAPCs for a variety of human genetic and degenerative ailments, including cardiovascular disease.

This chapter will focus on reviewing MAPCs and other adult stem cells displaying broad, pluripotent differentiation potential as cellular therapeutics with application for myocardial repair in heart disease. For clarity, the MAPC acronym will be used specifically to represent the cell population originally described by or acquired from the laboratory of Catherine Verfaillie and collaborators. Pluripotent adult stem cell cultures reported by other researchers will be referred to in accordance with designations used in the original publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang J, Narula J. Molecular biology of myocardial recovery. Surg Clin North Am 2004;84(1):223–242.

    Article  PubMed  Google Scholar 

  2. Lee MS, Lill M, Makkar RR. Stem cell transplantation in myocardial infarction. Rev Cardiovasc Med 2004;5(2):82–98.

    PubMed  Google Scholar 

  3. Fedak PW, Weisel RD, Verma S, Mickle DA, Li RK. Restoration and regeneration of failing myocardium with cell transplantation and tissue engineering. Semin Thorac Cardiovasc Surg 2003;15(3):277–286.

    Article  PubMed  Google Scholar 

  4. Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 2003;19:1–22.

    Article  PubMed  CAS  Google Scholar 

  5. Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 2002;12(11):502–508.

    Article  PubMed  CAS  Google Scholar 

  6. Verfaillie CM, Pera MF, Lansdorp PM. Stem cells: hype and reality. Hematology (Am Soc Hematol Educ Program) 2002:369–391.

    Google Scholar 

  7. Verfaillie CM, Schwartz R, Reyes M, Jiang Y. Unexpected potential of adult stem cells. Ann N YAcad Sci 2003;996:231–234.

    Article  CAS  Google Scholar 

  8. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004;116(5):639–648.

    Article  PubMed  CAS  Google Scholar 

  9. Cai J, Rao MS. Stem cell and precursor cell therapy. Neuromolecular Med 2002;2(3):233–249.

    Article  PubMed  CAS  Google Scholar 

  10. Verfaillie CM. Hematopoietic stem cells for transplantation. Nat Immunol 2002;3(4):314–317.

    Article  PubMed  CAS  Google Scholar 

  11. Palaganas J, Civin CI. Two steps forward: keeping the momentum in stem cell research. Stem Cells 2004;22(3):240–241.

    Article  PubMed  Google Scholar 

  12. Ivanovic Z, Hermitte F, de la Grange PB, et al. Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells 2004;22(5):716–724.

    Article  PubMed  Google Scholar 

  13. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428(6983):664–668.

    Article  PubMed  CAS  Google Scholar 

  14. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428(6983):668–673.

    Article  PubMed  CAS  Google Scholar 

  15. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–147.

    Article  PubMed  CAS  Google Scholar 

  16. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004;95(1):9–20.

    Article  PubMed  CAS  Google Scholar 

  17. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 2002;73(6):1919–1926.

    Article  PubMed  Google Scholar 

  18. Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 2004;109(25):3154–3157.

    Article  PubMed  Google Scholar 

  19. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002;30(8):896–904.

    Article  PubMed  CAS  Google Scholar 

  20. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci 2001;938:231–235.

    Article  PubMed  CAS  Google Scholar 

  21. Anjos-Afonzo F, Bonnet D. SSEA-1 defines the most primitive cell-type in adult murine mesenchymal stem cell (MUMSCS) compartment with multipotential activity in vitro and in vivo including hematopoietic reconstitution capacity. In: Third Annual Meeting of the International Society for Stem Cell Research, 2005, San Francisco, CA, 2005,35.

    Google Scholar 

  22. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418(6893):41–49.

    Article  PubMed  CAS  Google Scholar 

  23. Jahagirdar BN, Miller JS, Shet A, Verfaillie CM. Novel therapies for chronic myelogenous leukemia. Exp Hematol 2001;29(5):543–556.

    Article  PubMed  CAS  Google Scholar 

  24. Yasuhara T, Matsukawa N, Yu G, et al. Transplantation of cryopreserved human bone marrow-derived multipotent adult progenitor cells for neonatal hypoxic-ischemic injury: targeting the hippocampus. Rev Neurosci 2006;17(1,2):215–225.

    PubMed  Google Scholar 

  25. Pittenger MF, Mosca JD, McIntosh KR. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 2000;251:3–11.

    PubMed  CAS  Google Scholar 

  26. Jiang Y, Breyer A, Lien L, Blackstad M, Verfaillie C. Culture of multipotent adult progenitor cells (MAPCs). ASH Annual Meeting Abstracts 2004;104(11):23–29.

    Google Scholar 

  27. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99(10):3838–3843.

    Article  PubMed  Google Scholar 

  28. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 2003;75(3):389–397.

    Article  PubMed  CAS  Google Scholar 

  29. Barry FP, Murphy JM, English K, Mahon BP. Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev 2005;14(3):252–265.

    Article  PubMed  CAS  Google Scholar 

  30. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004;363(9419):1439–1441.

    Article  PubMed  Google Scholar 

  31. Yoon YS, Wecker A, Heyd L, et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 2005;115(2):326–338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hof, W.v. et al. (2007). Multipotent Adult Progenitor Cells. In: Penn, M.S. (eds) Stem Cells And Myocardial Regeneration. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-272-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-272-4_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-664-1

  • Online ISBN: 978-1-59745-272-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics