Skip to main content

Dopamine Receptor Oligomerization

  • Chapter
  • First Online:
The Dopamine Receptors

Part of the book series: The Receptors ((REC))

Abstract

Each dopamine (DA) receptor subtype physically interacts with its own kind (homomers) or other receptors (heteromers) in the plasma membrane of neurons in the basal ganglia to form dimeric or high-order receptor oligomers, termed dimeric or high-order receptor mosaics (RMs). Two types of heteromeric DA RMs are primarily discussed, namely type 1 receptor mosaic (RM1) formed by different DA receptor (DA-R) subtypes that display classical cooperativity and type 2 receptor mosaic (RM2) formed by DA-R subtypes physically interacting with other receptors that display non-classical cooperativity. The D2 receptor can form a RM1 with either D1 or D3 receptor subtypes as well as different types of RM2 with A2A, mGluR5, CB1, neuropeptide receptors (SSR5, NTS1, CCK-2), and N-methyl-d-aspartate (NMDA) receptors. Trimeric A2A-D2-mGluR5 and A2A-D2-CB1 RM2 may exist in striatal neuronal networks and are also discussed. D1 receptors can form RM1 with D3 receptors and different types of RM2 with A1, μ-opioid, and NMDA receptors. D3 receptors can form a RM2 with A2A receptors and D5 receptors can form a RM2 with γ-aminobutyric acid (GABA)-A receptors. Through existing as part of a horizontal molecular network, RMs fine-tune multiple effector systems already at the level of the membrane, involving Ca2+, Na+, and K+ and including G protein-regulated inwardly rectifying potassium channels (GIRK), adenylyl cyclase (AC), phospholipase C (PLC), and dopamine transporter activity. The synaptic strength is particularly modulated by DA receptors within DA receptor RM2 that involve ligand-gated ion channels such as GABA-A and NMDA receptors. The existence of a RM2 formed by D2 receptors and receptor tyrosine kinase (RTK) receptors is also likely to exist and bears high relevance for the integration of trophic and informational signals within striatal networks. A novel neuropsychopharmacology may develop on the basis of DA receptor-containing RMs in the brain from the unique pharmacological properties afforded by their receptor–receptor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2001;2:274–86.

    PubMed  CAS  Google Scholar 

  2. Fuxe K, Agnati LF, Jacobsen K, et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 2003;61: S19–23.

    PubMed  CAS  Google Scholar 

  3. Marshall FH. Heterodimerization of G-protein-coupled receptors in the CNS. Curr Opin Pharmacol 2001;1:40–4.

    PubMed  CAS  Google Scholar 

  4. Milligan G, White JH. Protein-protein interactions at G-protein-coupled receptors. Trends Pharmacol Sci 2001;22:513–8.

    PubMed  CAS  Google Scholar 

  5. Prinster SC, Hague C, Hall RA. Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 2005;57:289–98.

    PubMed  CAS  Google Scholar 

  6. Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep 2004;5:30–4.

    PubMed  CAS  Google Scholar 

  7. Agnati LF, Ferre S, Lluis C, Franco R, Fuxe K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003;55:509–50.

    PubMed  CAS  Google Scholar 

  8. Fuxe K, Canals M, Torvinen M, et al. Intramembrane receptor-receptor interactions: a novel principle in molecular medicine. J Neural Transm 2007;114:49–75.

    PubMed  CAS  Google Scholar 

  9. Fuxe K, Ferre S, Canals M, et al. Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 2005;26:209–20.

    PubMed  CAS  Google Scholar 

  10. Lee FJ, Wang YT, Liu F. Direct receptor cross-talk can mediate the modulation of excitatory and inhibitory neurotransmission by dopamine. J Mol Neurosci 2005;26:245–52.

    PubMed  CAS  Google Scholar 

  11. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res 2004;24:165–205.

    PubMed  CAS  Google Scholar 

  12. Fowler CE, Aryal P, Suen KF, Slesinger PA. Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 2007;580:51–65.

    PubMed  CAS  Google Scholar 

  13. Lee FJ, Liu F, Pristupa Z, Niznik H. Direct binding and functional coupling of the dopamine transporter with the dopamine D2 receptor. EMBO J 2007;26:2127–36.

    PubMed  CAS  Google Scholar 

  14. Antonelli T, Tomasini MC, Fuxe K, Agnati LF, Tanganelli S, Ferraro L. Receptor-receptor interactions as studied with microdialysis. Focus on NTR/D2 interactions in the basal ganglia. J Neural Transm 2007;114:105–13.

    PubMed  CAS  Google Scholar 

  15. Ferre S, Agnati LF, Ciruela F, et al. Neurotransmitter receptor heteromers and their integrative role in 'local modules': the striatal spine module. Brain Res Rev 2007;55:55–67.

    PubMed  CAS  Google Scholar 

  16. Li XM, Zoli M, Finnman UB, Le Novere N, Changeux JP, Fuxe K. A single (-)-nicotine injection causes change with a time delay in the affinity of striatal D2 receptors for antagonist, but not for agonist, nor in the D2 receptor mRNA levels in the rat substantia nigra. Brain Res 1995;679:157–67.

    PubMed  CAS  Google Scholar 

  17. Quarta D, Ciruela F, Patkar K, et al. Heteromeric nicotinic acetylcholine-dopamine autoreceptor complexes modulate striatal dopamine release. Neuropsychopharmacology 2007;32:35–42.

    PubMed  CAS  Google Scholar 

  18. Carlsson ML, Carlsson A, Nilsson M. Schizophrenia: from dopamine to glutamate and back. Curr Med Chem 2004;11:267–77.

    PubMed  CAS  Google Scholar 

  19. Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Mov Disord 2007;22:1990–2017.

    PubMed  Google Scholar 

  20. Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M. Receptor-receptor interactions within receptor mosaics.impact on neuropsychopharmacology. Brain Res Rev 2008;58:415–52.

    PubMed  CAS  Google Scholar 

  21. Agnati LF, Fuxe K, Zini I, Lenzi P, Hokfelt T. Aspects on receptor regulation and isoreceptor identification. Med Biol 1980;58:182–7.

    PubMed  CAS  Google Scholar 

  22. Franco R, Ferre S, Agnati L, et al. Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 2000;23:S50–9.

    PubMed  CAS  Google Scholar 

  23. Fuxe K, Agnati LF. Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med Res Rev 1985;5:441–82.

    PubMed  CAS  Google Scholar 

  24. Fuxe K, Agnati LF, Benfenati F, et al. Evidence for the existence of receptor—receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 1983;18:165–79.

    PubMed  CAS  Google Scholar 

  25. Fuxe K, Agnati LF, Benfenati F, et al. Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 1981;113:567–9.

    PubMed  CAS  Google Scholar 

  26. Fuxe K, Ferre S, Zoli M, Agnati LF. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Brain Res Rev 1998;26:258–73.

    PubMed  CAS  Google Scholar 

  27. Zoli M, Agnati LF, Hedlund PB, Li XM, Ferre S, Fuxe K. Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol 1993;7:293–334.

    PubMed  CAS  Google Scholar 

  28. Milligan G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 2004;66:1–7.

    PubMed  CAS  Google Scholar 

  29. Milligan G. G protein-coupled receptor dimerization: molecular basis and relevance to function. Biochim Biophys Acta 2007;1768:825–35.

    PubMed  CAS  Google Scholar 

  30. George SR, O‘Dowd BF, Lee SP. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002;1:808–20.

    PubMed  CAS  Google Scholar 

  31. Gonzalez-Maeso J, Ang RL, Yuen T, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 2008;452:93–7.

    PubMed  CAS  Google Scholar 

  32. Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA. Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology 2000;23:S60–77.

    PubMed  CAS  Google Scholar 

  33. Gouldson PR, Snell CR, Bywater RP, Higgs C, Reynolds CA. Domain swapping in G-protein coupled receptor dimers. Protein Eng 1998;11:1181–93.

    PubMed  CAS  Google Scholar 

  34. Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci USA 2002;99:14116–21.

    PubMed  CAS  Google Scholar 

  35. Agnati LF, Leo G, Genedani S, et al. Structural plasticity in G-protein coupled receptors as demonstrated by the allosteric actions of homocysteine and computer-assisted analysis of disordered domains. Brain Res Rev 2008;58:459–74.

    Google Scholar 

  36. Frauenfelder H, McMahon B. Dynamics and function of proteins: the search for general concepts. Proc Natl Acad Sci USA 1998;95:4795–7.

    PubMed  CAS  Google Scholar 

  37. Frauenfelder H, Sligar SG, Wolynes PG. The energy landscapes and motions of proteins. Science 1991;254:1598–603.

    PubMed  CAS  Google Scholar 

  38. Agnati LF, Franzen O, Ferre S, Leo G, Franco R, Fuxe K. Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. J Neural Transm Suppl 2003;65:1–28.

    PubMed  Google Scholar 

  39. Agnati LF, Fuxe K, Zoli M, Rondanini C, Ogren SO. New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med Biol 1982;60:183–90.

    PubMed  CAS  Google Scholar 

  40. Koshland DE, Jr., Hamadani K. Proteomics and models for enzyme cooperativity. J Biol Chem 2002;277:46841–4.

    PubMed  CAS  Google Scholar 

  41. Agnati LF, Guidolin D, Leo G, Fuxe K. A boolean network modelling of receptor mosaics relevance of topology and cooperativity. J Neural Transm 2007;114:77–92.

    PubMed  CAS  Google Scholar 

  42. Nimchinsky EA, Hof PR, Janssen WG, Morrison JH, Schmauss C. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 1997;272:29229–37.

    PubMed  CAS  Google Scholar 

  43. Elmhurst JL, Xie Z, O‘Dowd BF, George SR. The splice variant D3nf reduces ligand binding to the D3 dopamine receptor: evidence for heterooligomerization. Brain Res Mol Brain Res 2000;80:63–74.

    PubMed  CAS  Google Scholar 

  44. Limbird LE, Meyts PD, Lefkowitz RJ. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun 1975;64:1160–8.

    PubMed  CAS  Google Scholar 

  45. Armstrong D, Strange PG. Dopamine D2 receptor dimer formation: evidence from ligand binding. J Biol Chem 2001;276:22621–9.

    PubMed  CAS  Google Scholar 

  46. Strange PG. Oligomers of D2 dopamine receptors: evidence from ligand binding. J Mol Neurosci 2005;26:155–60.

    PubMed  CAS  Google Scholar 

  47. Ng GY, Mouillac B, George SR, et al. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur J Pharmacol 1994;267:7–19.

    PubMed  CAS  Google Scholar 

  48. Ng GY, O‘Dowd BF, Caron M, Dennis M, Brann MR, George SR. Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J Neurochem 1994;63:1589–95.

    PubMed  CAS  Google Scholar 

  49. Lee SP, Xie Z, Varghese G, Nguyen T, O‘Dowd BF, George SR. Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology 2000;23:S32–40.

    PubMed  CAS  Google Scholar 

  50. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 2003;421:127–8.

    PubMed  CAS  Google Scholar 

  51. Lee SP, O‘Dowd BF, George SR. Homo- and hetero-oligomerization of G protein-coupled receptors. Life Sci 2003;74:173–80.

    PubMed  CAS  Google Scholar 

  52. Lee SP, O‘Dowd BF, Rajaram RD, Nguyen T, George SR. D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry 2003;42:11023–31.

    PubMed  CAS  Google Scholar 

  53. Guo W, Shi L, Javitch JA. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem 2003;278:4385–8.

    PubMed  CAS  Google Scholar 

  54. Scarselli M, Novi F, Schallmach E, et al. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem 2001;276:30308–14.

    PubMed  CAS  Google Scholar 

  55. Maggio R, Vogel Z, Wess J. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. Proc Natl Acad Sci USA 1993;90:3103–7.

    PubMed  CAS  Google Scholar 

  56. Maggio R, Scarselli M, Novi F, Millan MJ, Corsini GU. Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole. J Neurochem 2003;87:631–41.

    PubMed  CAS  Google Scholar 

  57. Le Moine C, Bloch B. Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 1996;73:131–43.

    PubMed  Google Scholar 

  58. Rashid AJ, So CH, Kong MM, et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 2007;104:654–9.

    PubMed  CAS  Google Scholar 

  59. So CH, Varghese G, Curley KJ, et al. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 2005;68: 568–78.

    PubMed  CAS  Google Scholar 

  60. Lee SP, So CH, Rashid AJ, et al. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 2004;279:35671–8.

    PubMed  CAS  Google Scholar 

  61. Wong AC, Shetreat ME, Clarke JO, Rayport S. D1- and D2-like dopamine receptors are co-localized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. Neuroscience 1999;89:221–33.

    PubMed  CAS  Google Scholar 

  62. Rashid AJ, O‘Dowd BF, Verma V, George SR. Neuronal Gq/11-coupled dopamine receptors: an uncharted role for dopamine. Trends Pharmacol Sci 2007;28:551–5.

    PubMed  CAS  Google Scholar 

  63. Seeman P, Niznik HB, Guan HC, Booth G, Ulpian C. Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain. Proc Natl Acad Sci USA 1989;86:10156–60.

    PubMed  CAS  Google Scholar 

  64. Bordet R, Ridray S, Schwartz JC, Sokoloff P. Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 2000;12:2117–23.

    PubMed  CAS  Google Scholar 

  65. Fuxe K, Ferre S, Woods A, et al. Novel strategies for the treatment of Parkinson’s disease. Focus on receptor-receptor interactions in the basal ganglia. In: Kehr J, Fuxe K, Ungerstedt U, Svensson T, eds. Monitoring Molecules in Neuroscience; Stockholm: Karolinska University Press; 2003b, pp. 199–202.

    Google Scholar 

  66. Marcellino D, Ferre S, Casado V, et al. Identification of dopamine D1-D3 receptor heteromers:indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 2008;283:26016–25.

    PubMed  CAS  Google Scholar 

  67. Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 2008;74(1):59–69.

    PubMed  CAS  Google Scholar 

  68. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000;288:154–7.

    PubMed  CAS  Google Scholar 

  69. Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 2000;275:7862–9.

    PubMed  CAS  Google Scholar 

  70. Agnati LF, Fuxe K, Benfenati F, et al. Differential modulation by CCK-8 and CCK-4 of [3H]spiperone binding sites linked to dopamine and 5-hydroxytryptamine receptors in the brain of the rat. Neurosci Lett 1983;35:179–83.

    PubMed  CAS  Google Scholar 

  71. Li XM, Hedlund PB, Fuxe K. Cholecystokinin octapeptide in vitro and ex vivo strongly modulates striatal dopamine D2 receptors in rat forebrain sections. Eur J Neurosci 1995;7:962–71.

    PubMed  CAS  Google Scholar 

  72. Li XM, Hedlund PB, Agnati LF, Fuxe K. Dopamine D1 receptors are involved in the modulation of D2 receptors induced by cholecystokinin receptor subtypes in rat neostriatal membranes. Brain Res 1994;650:289–98.

    PubMed  CAS  Google Scholar 

  73. Dasgupta S, Li XM, Jansson A, et al. Regulation of dopamine D2 receptor affinity by cholecystokinin octapeptide in fibroblast cells cotransfected with human CCKB and D2L receptor cDNAs. Brain Res Mol Brain Res 1996;36:292–9.

    PubMed  CAS  Google Scholar 

  74. Antonelli T, Fuxe K, Tomasini MC, et al. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007;83:92–109.

    PubMed  CAS  Google Scholar 

  75. Ferraro L, Tomasini MC, Mazza R, et al. Neurotensin receptors as modulators of glutamatergic transmission. Brain Res Rev 2008;58:365–73.

    Google Scholar 

  76. Deutch AY, Zahm DS. The current status of neurotensin-dopamine interactions. Issues and speculations. Ann N Y Acad Sci 1992;668:232–52.

    PubMed  CAS  Google Scholar 

  77. Agnati LF, Fuxe K, Benfenati F, Battistini N. Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propylnorapomorphine binding sites. Acta Physiol Scand 1983;119:459–61.

    PubMed  CAS  Google Scholar 

  78. Diaz-Cabiale Z, Fuxe K, Narvaez JA, et al. Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: counteraction by a NTR1-like receptor antagonist. Neuroreport 2002;13:763–6.

    PubMed  CAS  Google Scholar 

  79. Fuxe K, O‘Connor WT, Antonelli T, et al. Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin-dopamine receptor interactions in the neostriatum. Proc Natl Acad Sci USA 1992;89:5591–5.

    PubMed  CAS  Google Scholar 

  80. Fuxe K, Von Euler G, Agnati LF, et al. Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin. Ann N Y Acad Sci 1992;668:186–204.

    PubMed  CAS  Google Scholar 

  81. Tanganelli S, Li XM, Ferraro L, et al. Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum. Eur J Pharmacol 1993;230:159–66.

    PubMed  CAS  Google Scholar 

  82. von Euler G. Biochemical characterization of the intramembrane interaction between neurotensin and dopamine D2 receptors in the rat brain. Brain Res 1991;561:93–8.

    Google Scholar 

  83. Von Euler G, Fuxe K. Neurotensin reduces the affinity of D-2 dopamine receptors in rat striatal membranes. Acta Physiol Scand 1987;131:625–6.

    Google Scholar 

  84. von Euler G, van der Ploeg I, Fredholm BB, Fuxe K. Neurotensin decreases the affinity of dopamine D2 agonist binding by a G protein-independent mechanism. J Neurochem 1991;56:178–83.

    Google Scholar 

  85. Li XM, Hedlund PB, Fuxe K. Strong effects of NT/NN peptides on DA D2 receptors in rat neostriatal sections. Neuroreport 1994;5:1621–4.

    PubMed  CAS  Google Scholar 

  86. Li XM, Ferraro L, Tanganelli S, et al. Neurotensin peptides antagonistically regulate postsynaptic dopamine D2 receptors in rat nucleus accumbens: a receptor binding and microdialysis study. J Neural Transm Gen Sect 1995;102:125–37.

    PubMed  CAS  Google Scholar 

  87. Tanganelli S, von Euler G, Fuxe K, Agnati LF, Ungerstedt U. Neurotensin counteracts apomorphine-induced inhibition of dopamine release as studied by microdialysis in rat neostriatum. Brain Res 1989;502:319–24.

    PubMed  CAS  Google Scholar 

  88. Canals M, Marcellino D, Fanelli F, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 2003;278:46741–9.

    PubMed  CAS  Google Scholar 

  89. Ciruela F, Burgueno J, Casado V, et al. Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 2004;76:5354–63.

    PubMed  CAS  Google Scholar 

  90. Hillion J, Canals M, Torvinen M, et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 2002;277:18091–7.

    PubMed  CAS  Google Scholar 

  91. Kamiya T, Saitoh O, Yoshioka K, Nakata H. Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 2003;306:544–9.

    PubMed  CAS  Google Scholar 

  92. Woods AS, Ciruela F, Fuxe K, et al. Role of electrostatic interaction in receptor-receptor heteromerization. J Mol Neurosci 2005;26:125–32.

    PubMed  CAS  Google Scholar 

  93. Torvinen M, Kozell LB, Neve KA, Agnati LF, Fuxe K. Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor. J Mol Neurosci 2004;24:173–80.

    PubMed  CAS  Google Scholar 

  94. Ferre S, Fuxe K. Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res 1992;594:124–30.

    PubMed  CAS  Google Scholar 

  95. Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 1991;88:7238–41.

    PubMed  CAS  Google Scholar 

  96. Ferre S, O‘Connor WT, Snaprud P, Ungerstedt U, Fuxe K. Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience 1994;63:765–73.

    PubMed  CAS  Google Scholar 

  97. Filip M, Frankowska M, Zaniewska M, et al. Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 2006;1077:67–80.

    PubMed  CAS  Google Scholar 

  98. Marcellino D, Roberts DC, Navarro G, et al. Increase in A2A receptors in the nucleus accumbens after extended cocaine self-administration and its disappearance after cocaine withdrawal. Brain Res 2007;1143:208–20.

    PubMed  CAS  Google Scholar 

  99. Bara-Jimenez W, Sherzai A, Dimitrova T, et al. Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 2003;61:293–6.

    PubMed  CAS  Google Scholar 

  100. Fuxe K, Dahlstrom A, Hoistad M, et al. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev 2007;55:17–54.

    PubMed  CAS  Google Scholar 

  101. Rimondini R, Ferre S, Gimenez-Llort L, Ogren SO, Fuxe K. Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 1998;347:153–8.

    PubMed  CAS  Google Scholar 

  102. Rimondini R, Ferre S, Ogren SO, Fuxe K. Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology 1997;17:82–91.

    PubMed  CAS  Google Scholar 

  103. Tanganelli S, Sandager Nielsen K, Ferraro L, et al. Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson’s Disease. Parkinsonism Relat Disord 2004;10:273–80.

    PubMed  CAS  Google Scholar 

  104. Ferre S, Karcz-Kubicha M, Hope BT, et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA 2002;99:11940–5.

    PubMed  CAS  Google Scholar 

  105. Ferre S, Popoli P, Rimondini R, Reggio R, Kehr J, Fuxe K. Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropharmacology 1999;38:129–40.

    PubMed  CAS  Google Scholar 

  106. Fuxe K, Celani MF, Martire M, Zini I, Zoli M, Agnati LF. l-Glutamate reduces the affinity of [3H]N-propylnorapomorphine binding sites in striatal membranes. Eur J Pharmacol 1984;100:127–30.

    PubMed  CAS  Google Scholar 

  107. Popoli P, Pezzola A, Torvinen M, et al. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 2001;25:505–13.

    PubMed  CAS  Google Scholar 

  108. Binda AV, Kabbani N, Lin R, Levenson R. D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1 N. Mol Pharmacol 2002;62:507–13.

    PubMed  CAS  Google Scholar 

  109. Li M, Bermak JC, Wang ZW, Zhou QY. Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280). Mol Pharmacol 2000;57:446–52.

    PubMed  CAS  Google Scholar 

  110. Lin R, Karpa K, Kabbani N, Goldman-Rakic P, Levenson R. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 2001;98:5258–63.

    PubMed  CAS  Google Scholar 

  111. Smith FD, Oxford GS, Milgram SL. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 1999;274:19894–900.

    PubMed  CAS  Google Scholar 

  112. Bockaert J, Roussignol G, Becamel C, et al. GPCR-interacting proteins (GIPs): nature and functions. Biochem Soc Trans 2004;32:851–5.

    PubMed  CAS  Google Scholar 

  113. Yao WD, Gainetdinov RR, Arbuckle MI, et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 2004;41:625–38.

    PubMed  CAS  Google Scholar 

  114. Aarts M, Liu Y, Liu L, et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 2002;298:846–50.

    PubMed  CAS  Google Scholar 

  115. Torvinen M, Marcellino D, Canals M, et al. Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 2005;67:400–7.

    PubMed  CAS  Google Scholar 

  116. Schwartz JC, Diaz J, Pilon C, Sokoloff P. Possible implications of the dopamine D(3) receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev 2000;31:277–87.

    PubMed  CAS  Google Scholar 

  117. Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 2005;67:1697–704.

    PubMed  CAS  Google Scholar 

  118. Marcellino D, Carriba P, Filip M, et al. Antagonistic cannabinoid CB(1)/dopamine D(2) receptor interactions in striatal CB(1)/D(2) heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology 2008;54(5):815–23.

    PubMed  CAS  Google Scholar 

  119. Pickel VM, Chan J, Kearn CS, Mackie K. Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J Comp Neurol 2006;495:299–313.

    PubMed  CAS  Google Scholar 

  120. Uchigashima M, Narushima M, Fukaya M, Katona I, Kano M, Watanabe M. Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J Neurosci 2007;27: 3663–76.

    PubMed  CAS  Google Scholar 

  121. Carriba P, Ortiz O, Patkar K, et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 2007;32:2249–59.

    PubMed  CAS  Google Scholar 

  122. Andersson M, Usiello A, Borgkvist A, et al. Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci 2005;25:8432–8.

    PubMed  CAS  Google Scholar 

  123. Borgkvist A, Marcellino D, Fuxe K, Greengard P, Fisone G. Regulation of DARPP-32 phosphorylation by Delta9-tetrahydrocannabinol. Neuropharmacology 2008;54:31–5.

    PubMed  CAS  Google Scholar 

  124. Mukhopadhyay S, McIntosh HH, Houston DB, Howlett AC. The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 2000;57:162–70.

    PubMed  CAS  Google Scholar 

  125. Franco R, Lluis C, Canela EI, et al. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm 2007;114:93–104.

    PubMed  CAS  Google Scholar 

  126. Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 2007;92:210–7.

    PubMed  CAS  Google Scholar 

  127. Gines S, Hillion J, Torvinen M, et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 2000;97:8606–11.

    PubMed  CAS  Google Scholar 

  128. Torvinen M, Gines S, Hillion J, et al. Interactions among adenosine deaminase, adenosine A(1) receptors and dopamine D(1) receptors in stably cotransfected fibroblast cells and neurons. Neuroscience 2002;113:709–19.

    PubMed  CAS  Google Scholar 

  129. Ferre S, Popoli P, Gimenez-Llort L, et al. Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 1994;6:73–6.

    PubMed  CAS  Google Scholar 

  130. Ferre S, Rimondini R, Popoli P, et al. Stimulation of adenosine A1 receptors attenuates dopamine D1 receptor-mediated increase of NGFI-A, c-fos and jun-B mRNA levels in the dopamine-denervated striatum and dopamine D1 receptor-mediated turning behaviour. Eur J Neurosci 1999;11:3884–92.

    PubMed  CAS  Google Scholar 

  131. Ferre S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997;20: 482–7.

    PubMed  CAS  Google Scholar 

  132. Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O‘Dowd BF. Mu-opioid receptor heterooligomer formation with the dopamine D(1) receptor as directly visualized in living cells. Eur J Pharmacol 2008;581:235–43.

    PubMed  CAS  Google Scholar 

  133. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111:219–30.

    PubMed  CAS  Google Scholar 

  134. Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F. Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 2004;24:1149–58.

    PubMed  CAS  Google Scholar 

  135. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003;278:20196–202.

    PubMed  CAS  Google Scholar 

  136. Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, et al. Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 2002;88:3010–20.

    PubMed  CAS  Google Scholar 

  137. Snyder GL, Fienberg AA, Huganir RL, Greengard P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 1998;18:10297–303.

    PubMed  CAS  Google Scholar 

  138. Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 2001;21: 3063–72.

    PubMed  CAS  Google Scholar 

  139. Dunah AW, Standaert DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 2001;21:5546–58.

    PubMed  CAS  Google Scholar 

  140. Liu XY, Chu XP, Mao LM, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuron 2006;52:897–909.

    PubMed  CAS  Google Scholar 

  141. Jackson SN, Wang HY, Yergey A, Woods AS. Phosphate stabilization of intermolecular interactions. J Proteome Res 2006;5:122–6.

    PubMed  CAS  Google Scholar 

  142. Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 2000;403:274–80.

    PubMed  CAS  Google Scholar 

  143. Wang Q, Liu L, Pei L, et al. Control of synaptic strength, a novel function of Akt. Neuron 2003;38:915–28.

    PubMed  CAS  Google Scholar 

  144. Rivera A, Alberti I, Martin AB, Narvaez JA, de la Calle A, Moratalla R. Molecular phenotype of rat striatal neurons expressing the dopamine D5 receptor subtype. Eur J Neurosci 2002;16:2049–58.

    PubMed  Google Scholar 

  145. Flores-Hernandez J, Hernandez S, Snyder GL, et al. D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 2000;83:2996–3004.

    PubMed  CAS  Google Scholar 

  146. Perez de la Mora M, Ferre S, Fuxe K. GABA-dopamine receptor-receptor interactions in neostriatal membranes of the rat. Neurochem Res 1997;22:1051–4.

    Google Scholar 

  147. Seamans JK, Gorelova N, Durstewitz D, Yang CR. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 2001;21: 3628–38.

    PubMed  CAS  Google Scholar 

  148. Wang C, Buck DC, Yang R, Macey TA, Neve KA. Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J Neurochem 2005;93:899–909.

    PubMed  CAS  Google Scholar 

  149. Maudsley S, Pierce KL, Zamah AM, et al. The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 2000;275:9572–80.

    PubMed  CAS  Google Scholar 

  150. Wetzker R, Bohmer FD. Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 2003;4:651–7.

    PubMed  CAS  Google Scholar 

  151. Fenimore PW, Frauenfelder H, McMahon BH, Parak FG. Slaving: solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci USA 2002;99:16047–51.

    PubMed  CAS  Google Scholar 

  152. Williams DH, O‘Brien DP, Sandercock AM, Stephens E. Order changes within receptor systems upon ligand binding: receptor tightening/oligomerisation and the interpretation of binding parameters. J Mol Biol 2004;340:373–83.

    PubMed  CAS  Google Scholar 

  153. Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol 2004;61:641–4.

    PubMed  Google Scholar 

  154. Greengard P, Nairn AC, Girault JA, et al. The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev 1998;26:274–84.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from the Swedish Research Council (04x-715), Marianne and Marcus Wallenberg Foundation, and a grant from the EC (QLG3-CT2001-01056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjell Fuxe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuxe, K., Marcellino, D., Guidolin, D., Woods, A., Agnati, L. (2010). Dopamine Receptor Oligomerization. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_10

Download citation

Publish with us

Policies and ethics