Skip to main content

BMP9, BMP10, and ALK1: An Emerging Vascular Signaling Pathway with Therapeutic Applications

  • Chapter
  • First Online:
Molecular Mechanisms of Angiogenesis

Abstract

Bone morphogenetic proteins (BMPs) are growth factors of the TGFß family. Among them, BMP9 and BMP10 have been shown to bind with high affinity to a receptor expressed only on blood and lymphatic endothelial cells, ALK1 (activin receptor-like kinase 1), suggesting an important role for BMP9, BMP10, and ALK1 in vascular development. Indeed, mutations of ALK1 have been linked to two vascular diseases, the Rendu-Osler-Weber syndrome, also known as hemorrhagic hereditary telangiectasia, and pulmonary arterial hypertension. BMP9 is expressed by the liver, while BMP10 is mainly expressed by the heart and both are present in blood. The current working model is that BMP9 and BMP10 via ALK1 maintain a quiescent endothelial state. BMP9 and BMP10 have been recently shown to play a critical role in blood vessel development in an interchangeable manner. On the other hand, preliminary works seem to indicate that BMP9 plays a specific role in lymphatic development. Although the cellular functions of ALK1 are not completely understood, therapeutic treatment blocking ALK1 have already been developed. Two different approaches are ongoing: one, using the extracellular domain of ALK1 (ALK1ECD) that will trap any ligand able to bind to this soluble form of ALK1 and, the second, using a blocking anti-ALK1 antibody. Preliminary data from phase 1 clinical trials indicate no major toxicity with these two compounds and phase 2 clinical trials have started in patients suffering from different cancers. Taken together, these results clearly demonstrate that the BMP9/BMP10/ALK1 is an emerging vascular signaling pathway with potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, Charlton R, Parums DV, Jowett T, Marchuk DA, Burn J, Diamond AG (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Atri D, Larrivee B, Eichmann A, Simons M (2013) Endothelial signaling and the molecular basis of arteriovenous malformation. Cell Mol Life Sci. doi:10.1007/s00018-013-1475-1

    PubMed  Google Scholar 

  • Beets K, Huylebroeck D, Moya IM, Umans L, Zwijsen A (2013) Robustness in angiogenesis: notch and BMP shaping waves. Trends Genet 29(3):140–149. doi:10.1016/j.tig.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  • Bendell JC, Gordon MS, Hurwitz HI, Jones SF, Mendelson DS, Blobe GC, Agarwal N, Condon CH, Wilson D, Pearsall AE, Yang Y, McClure T, Attie KM, Sherman ML, Sharma S (2013) Safety, pharmacokinetics, pharmacodynamics and antitumor activity of dalantercept, an activin receptor-like kinase-1 ligand trap, in patients with advanced cancer. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-1840

    Google Scholar 

  • Bidart M, Ricard N, Levet S, Samson M, Mallet C, David L, Subileau M, Tillet E, Feige JJ, Bailly S (2012) BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci 69(2):313–324. doi:10.1007/s00018-011-0751-1

    Article  CAS  PubMed  Google Scholar 

  • Bourdeau A, Faughnan ME, Letarte M (2000) Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc Med 10(7):279–285. doi:S1050-1738(01)00062-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620. doi:10.1016/j.cellsig.2010.10.003, S0898-6568(10)00290-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, Singh M, Tsareva T, Parice Y, Mahoney A, Roschke V, Sanyal I, Choe S (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280(26):25111–25118

    Article  CAS  PubMed  Google Scholar 

  • Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV (2011) Soluble endoglin specifically binds BMP9/BMP10 via its orphan domain, inhibits blood vessel formation and suppresses tumor growth. J Biol Chem 286(34):30034–30046. doi:10.1074/jbc.M111.260133, M111.260133 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131(9):2219–2231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Brady Ridgway J, Sai T, Lai J, Warming S, Chen H, Roose-Girma M, Zhang G, Shou W, Yan M (2013) Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development. Proc Natl Acad Sci U S A 110(29):11887–11892. doi:10.1073/pnas.1306074110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(1):85–100. doi:10.1084/jem.20091309, S101–105. jem.20091309 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961

    Article  CAS  PubMed  Google Scholar 

  • David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S, Plauchu H, Feige JJ, Bailly S (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102(8):914–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20(3):203–212. doi:10.1016/j.cytogfr.2009.05.001, S1359-6101(09)00040-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ (2013) BMP-9 balances endothelial cell fate. Proc Natl Acad Sci U S A 110(47):18746–18747. doi:10.1073/pnas.1318346110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duarte CW, Murray K, Lucas FL, Fairfield K, Miller H, Brooks PC, Vary CP (2013) Improved survival outcomes in cancer patients with hereditary hemorrhagic telangiectasia. Cancer Epidemiol Biomarkers Prev. doi:10.1158/1055-9965.epi-13-0665

    PubMed  Google Scholar 

  • Dupuis-Girod S, Bailly S, Plauchu H (2010) Hereditary hemorrhagic telangiectasia (HHT): from molecular biology to patient care. J Thromb Haemost 8(7):1447–1456. doi:10.1111/j.1538-7836.2010.03860.x, JTH3860 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Dupuis-Girod S, Ginon I, Saurin JC, Marion D, Guillot E, Decullier E, Roux A, Carette MF, Gilbert-Dussardier B, Hatron PY, Lacombe P, Lorcerie B, Riviere S, Corre R, Giraud S, Bailly S, Paintaud G, Ternant D, Valette PJ, Plauchu H, Faure F (2012) Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 307(9):948–955. doi:10.1001/jama.2012.250

    Article  CAS  PubMed  Google Scholar 

  • Flieger D, Hainke S, Fischbach W (2006) Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol 85(9):631–632

    Article  PubMed  Google Scholar 

  • Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M (2008) Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 294(1):L98–L109

    Article  CAS  PubMed  Google Scholar 

  • Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, Ganguly A, Castells A, Ploos van Amstel JK, Westermann CJ, Pyeritz RE, Marchuk DA (2006) SMAD4 mutations found in unselected HHT patients. J Med Genet 43(10):793–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12(4):817–828

    Article  CAS  PubMed  Google Scholar 

  • Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP, Sakai LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem 280(30):27970–27980. doi:10.1074/jbc.M504270200, M504270200 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Gregory AL, Xu G, Sotov V, Letarte M (2013) Review: the enigmatic role of endoglin in the placenta. Placenta. doi:10.1016/j.placenta.2013.10.020

    PubMed  Google Scholar 

  • Harrison RE, Berger R, Haworth SG, Tulloh R, Mache CJ, Morrell NW, Aldred MA, Trembath RC (2005) Transforming growth factor-beta receptor mutations and pulmonary arterial hypertension in childhood. Circulation 111(4):435–441. doi:10.1161/01.CIR.0000153798.78540.87, 111/4/435 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hazen VM, Andrews MG, Umans L, Crenshaw EB 3rd, Zwijsen A, Butler SJ (2012) BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord. Dev Biol 367(2):216–227. doi:10.1016/j.ydbio.2012.05.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrera B, van Dinther M, Ten Dijke P, Inman GJ (2009) Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res 69(24):9254–9262. doi:10.1158/0008-5472.CAN-09-2912, 0008–5472.CAN-09-2912 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herrera B, Garcia-Alvaro M, Cruz S, Walsh P, Fernandez M, Roncero C, Fabregat I, Sanchez A, Inman GJ (2013) BMP9 is a proliferative and survival factor for human hepatocellular carcinoma cells. PLoS One 8(7):e69535. doi:10.1371/journal.pone.0069535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu-Lowe DD, Chen E, Zhang L, Watson KD, Mancuso P, Lappin P, Wickman G, Chen JH, Wang J, Jiang X, Amundson K, Simon R, Erbersdobler A, Bergqvist S, Feng Z, Swanson TA, Simmons BH, Lippincott J, Casperson GF, Levin WJ, Stampino CG, Shalinsky DR, Ferrara KW, Fiedler W, Bertolini F (2011) Targeting activin receptor-like kinase 1 inhibits angiogenesis and tumorigenesis through a mechanism of action complementary to anti-VEGF therapies. Cancer Res 71(4):1362–1373. doi:10.1158/0008-5472.CAN-10-1451, 0008–5472.CAN-10-1451 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Peacock MR, George SC, Hughes CC (2012) BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis 15(3):497–509. doi:10.1007/s10456-012-9277-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamplot JD, Qin J, Nan G, Wang J, Liu X, Yin L, Tomal J, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC (2013) BMP9 signaling in stem cell differentiation and osteogenesis. Am J Stem Cells 2(1):1–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet 26(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Larrivee B, Prahst C, Gordon E, Del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A (2012) ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell 22(3):489–500. doi:10.1016/j.devcel.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  • Laux DW, Young S, Donovan JP, Mansfield CJ, Upton PD, Roman BL (2013) Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence. Development 140(16):3403–3412. doi:10.1242/dev.095307

    Article  CAS  PubMed  Google Scholar 

  • Levet S, Ciais D, Merdzhanova G, Mallet C, Zimmers TA, Lee SJ, Navarro FP, Texier I, Feige JJ, Bailly S, Vittet D (2013) Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood. doi:10.1182/blood-2012-12-472142

    PubMed  Google Scholar 

  • Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284(5419):1534–1537

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Gu X, Weng H, Ghafoory S, Liu Y, Feng T, Dzieran J, Li L, Ilkavets I, Kruithof-de Julio M, Munker S, Marx A, Piiper A, Augusto Alonso E, Gretz N, Gao C, Wolfl S, Dooley S, Breitkopf-Heinlein K (2013) Bone morphogenetic protein-9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci 104(3):398–408. doi:10.1111/cas.12093

    Article  CAS  PubMed  Google Scholar 

  • Lupu A, Stefanescu C, Treton X, Attar A, Corcos O, Bouhnik Y (2013) Bevacizumab as rescue treatment for severe recurrent gastrointestinal bleeding in hereditary hemorrhagic telangiectasia. J Clin Gastroenterol 47(3):256–257. doi:10.1097/MCG.0b013e3182688d49

    Article  CAS  PubMed  Google Scholar 

  • Mahlawat P, Ilangovan U, Biswas T, Sun LZ, Hinck AP (2012) Structure of the Alk1 extracellular domain and characterization of its bone morphogenetic protein (BMP) binding properties. Biochemistry 51(32):6328–6341. doi:10.1021/bi300942x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahmoud M, Borthwick GM, Hislop AA, Arthur HM (2009) Endoglin and activin receptor-like-kinase 1 are co-expressed in the distal vessels of the lung: implications for two familial vascular dysplasias, HHT and PAH. Lab Invest 89(1):15–25. doi:10.1038/labinvest.2008.112, labinvest2008112 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Massague J (2008) TGFbeta in cancer. Cell 134(2):215–230. doi:10.1016/j.cell.2008.07.001, S0092-8674(08)00878-7 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mazerbourg S, Sangkuhl K, Luo CW, Sudo S, Klein C, Hsueh AJ (2005) Identification of receptors and signaling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses. J Biol Chem 280(37):32122–32132

    Article  CAS  PubMed  Google Scholar 

  • McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8(4):345–351

    Article  CAS  PubMed  Google Scholar 

  • Miller AF, Harvey SA, Thies RS, Olson MS (2000) Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 275(24):17937–17945

    Article  CAS  PubMed  Google Scholar 

  • Mitchell A, Adams LA, Macquillan G, Tibballs J, Vanden Driesen R, Delriviere L (2008) Bevacizumab reverses need for liver transplantation in hereditary hemorrhagic telangiectasia. Liver Transpl 14(2):210–213

    Article  PubMed  Google Scholar 

  • Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE, Solban N, Ucran JA, Pearsall RS, Underwood KW, Seehra J, Kumar R (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9(2):379–388. doi:10.1158/1535-7163.MCT-09-0650, 1535–7163.MCT-09-0650 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16(3):251–263. doi:10.1016/j.cytogfr.2005.01.009, S1359-6101(05)00039-0

    Article  CAS  PubMed  Google Scholar 

  • Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH, Aburatani H, Miyazono K (2011) ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res 39(20):8712–8727. doi:10.1093/nar/gkr572, gkr572 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moya IM, Umans L, Maas E, Pereira PN, Beets K, Francis A, Sents W, Robertson EJ, Mummery CL, Huylebroeck D, Zwijsen A (2012) Stalk cell phenotype depends on integration of notch and smad1/5 signaling cascades. Dev Cell 22(3):501–514. doi:10.1016/j.devcel.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  • Naljayan MV, Karumanchi SA (2013) New developments in the pathogenesis of preeclampsia. Adv Chronic Kidney Dis 20(3):265–270. doi:10.1053/j.ackd.2013.02.003

    Article  PubMed  Google Scholar 

  • Niessen K, Zhang G, Ridgway JB, Chen H, Yan M (2010) ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115(8):1654–1661. doi:10.1182/blood-2009-07-235655, blood-2009-07-235655 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nolan-Stevaux O, Zhong W, Culp S, Shaffer K, Hoover J, Wickramasinghe D, Ruefli-Brasse A (2012) Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS One 7(12):e50920. doi:10.1371/journal.pone.0050920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor- beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97(6):2626–2631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panchenko MP, Williams MC, Brody JS, Yu Q (1996) Type I receptor serine-threonine kinase preferentially expressed in pulmonary blood vessels. Am J Physiol 270(4 Pt 1):L547–L558

    CAS  PubMed  Google Scholar 

  • Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z, Park A, Wu X, Kaartinen V, Roman BL, Oh SP (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 111(2):633–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, Oh SH, Walter G, Raizada MK, Sorg BS, Oh SP (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119(11):3487–3496. doi:10.1172/JCI39482, 39482 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park JE, Shao D, Upton PD, Desouza P, Adcock IM, Davies RJ, Morrell NW, Griffiths MJ, Wort SJ (2012) BMP-9 induced endothelial cell tubule formation and inhibition of migration involves Smad1 driven endothelin-1 production. PLoS One 7(1):e30075. doi:10.1371/journal.pone.0030075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poirier O, Ciumas M, Eyries M, Montagne K, Nadaud S, Soubrier F (2012) Inhibition of apelin expression by BMP signaling in endothelial cells. Am J Physiol Cell Physiol 303(11):C1139–C1145. doi:10.1152/ajpcell.00168.2012

    Article  CAS  PubMed  Google Scholar 

  • Poorgholi Belverdi M, Krause C, Guzman A, Knaus P (2012) Comprehensive analysis of TGF-beta and BMP receptor interactomes. Eur J Cell Biol 91(4):287–293. doi:10.1016/j.ejcb.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  • Ricard N, Ciais D, Levet S, Subileau M, Mallet C, Zimmers TA, Lee SJ, Bidart M, Feige JJ, Bailly S (2012) BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 119(25):6162–6171. doi:10.1182/blood-2012-01-407593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roelen BA, van Rooijen MA, Mummery CL (1997) Expression of ALK-1, a type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development. Dev Dyn 209(4):418–430

    Article  CAS  PubMed  Google Scholar 

  • Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12):3009–3019

    CAS  PubMed  Google Scholar 

  • Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Figg WD, Spencer S, Adams BJ, Alvarez D, Seon BK, Theuer CP, Leigh BR, Gordon MS (2012) A phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res 18(17):4820–4829. doi:10.1158/1078-0432.ccr-12-0098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972

    Article  CAS  PubMed  Google Scholar 

  • Seghers L, de Vries MR, Pardali E, Hoefer IE, Hierck BP, ten Dijke P, Goumans MJ, Quax PH (2012) Shear induced collateral artery growth modulated by endoglin but not by ALK1. J Cell Mol Med 16(10):2440–2450. doi:10.1111/j.1582-4934.2012.01561.x

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Yun J, Oh SP (2003) Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 93(7):682–689. doi:10.1161/01.RES.0000095246.40391.3B, 01.RES.0000095246.40391.3B [pii]

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Hong KH, Oh SP (2006) Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development. Lab Invest 86(2):116–129

    Google Scholar 

  • Sengle G, Ono RN, Sasaki T, Sakai LY (2011) Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. J Biol Chem 286(7):5087–5099. doi:10.1074/jbc.M110.188615, M110.188615 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shintani M, Yagi H, Nakayama T, Saji T, Matsuoka R (2009) A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension. J Med Genet 46(5):331–337. doi:10.1136/jmg.2008.062703, jmg.2008.062703 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Shovlin CL (2010) Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 24(6):203–219. doi:10.1016/j.blre.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  • Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20(5–6):343–355. doi:10.1016/j.cytogfr.2009.10.007, S1359-6101(09)00082-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Somekawa S, Imagawa K, Hayashi H, Sakabe M, Ioka T, Sato GE, Inada K, Iwamoto T, Mori T, Uemura S, Nakagawa O, Saito Y (2012) Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogenesis. Proc Natl Acad Sci U S A 109(30):12064–12069. doi:10.1073/pnas.1207210109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan S, Hanes MA, Dickens T, Porteous ME, Oh SP, Hale LP, Marchuk DA (2003) A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum Mol Genet 12(5):473–482

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692. doi:10.1242/jcs.061556, jcs.061556 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Torsney E, Charlton R, Diamond AG, Burn J, Soames JV, Arthur HM (2003) Mouse model for hereditary hemorrhagic telangiectasia has a generalized vascular abnormality. Circulation 107(12):1653–1657. doi:10.1161/01.CIR.0000058170.92267.00, 01.CIR.0000058170.92267.00 [pii]

    Article  PubMed  Google Scholar 

  • Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J, Ucran JA, Liharska K, Underwood KW, Seehra J, Kumar R, Grinberg AV (2012) Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem 287(33):27313–27325. doi:10.1074/jbc.M112.377960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Upton PD, Davies RJ, Trembath RC, Morrell NW (2009) BMP and activin type-II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem 284(23):15794–15804. doi:10.1074/jbc.M109.002881, M109.002881 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331

    Article  CAS  PubMed  Google Scholar 

  • Valdimarsdottir G, Goumans MJ, Rosendahl A, Brugman M, Itoh S, Lebrin F, Sideras P, ten Dijke P (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106(17):2263–2270

    Article  CAS  PubMed  Google Scholar 

  • van Meeteren LA, Goumans MJ, ten Dijke P (2011) TGF-beta receptor signaling pathways in angiogenesis; emerging targets for anti-angiogenesis therapy. Curr Pharm Biotechnol 12(12):2108–2120

    Article  PubMed  Google Scholar 

  • van Meeteren LA, Thorikay M, Bergqvist S, Pardali E, Stampino CG, Hu-Lowe D, Goumans MJ, ten Dijke P (2012) Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 287(22):18551–18561. doi:10.1074/jbc.M111.338103

    Article  PubMed Central  PubMed  Google Scholar 

  • Vecchia L, Olivieri C, Scotti C (2013) Activin receptor-like kinase 1: a novel anti-angiogenesis target from TGF-beta family. Mini Rev Med Chem 13(10):1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D'Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12(6):642–649

    Article  CAS  PubMed  Google Scholar 

  • Vlachou PA, Colak E, Koculym A, Kirpalani A, Kim TK, Hirschfield GM, Faughnan ME (2013) Improvement of ischemic cholangiopathy in three patients with hereditary hemorrhagic telangiectasia following treatment with bevacizumab. J Hepatol 59(1):186–189. doi:10.1016/j.jhep.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  • Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P (2010) BMPs: from bone to body morphogenetic proteins. Sci Signal 3(107)

    Google Scholar 

  • Walker EJ, Su H, Shen F, Choi EJ, Oh SP, Chen G, Lawton MT, Kim H, Chen Y, Chen W, Young WL (2011) Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol 69(6):954–962. doi:10.1002/ana.22348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker EJ, Su H, Shen F, Degos V, Amend G, Jun K, Young WL (2012) Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke 43(7):1925–1930. doi:10.1161/STROKEAHA.111.647982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang K, Feng H, Ren W, Sun X, Luo J, Tang M, Zhou L, Weng Y, He TC, Zhang Y (2011) BMP9 inhibits the proliferation and invasiveness of breast cancer cells MDA-MB-231. J Cancer Res Clin Oncol 137(11):1687–1696. doi:10.1007/s00432-011-1047-4

    Article  CAS  PubMed  Google Scholar 

  • Wooderchak-Donahue WL, McDonald J, O’Fallon B, Upton PD, Li W, Roman BL, Young S, Plant P, Fulop GT, Langa C, Morrell NW, Botella LM, Bernabeu C, Stevenson DA, Runo JR, Bayrak-Toydemir P (2013) BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. doi:10.1016/j.ajhg.2013.07.004

    PubMed Central  PubMed  Google Scholar 

  • Ye L, Kynaston H, Jiang WG (2008) Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. Mol Cancer Res 6(10):1594–1606. doi:10.1158/1541-7786.MCR-08-0171, 6/10/1594 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Kynaston H, Jiang WG (2009) Bone morphogenetic protein-10 suppresses the growth and aggressiveness of prostate cancer cells through a Smad independent pathway. J Urol 181(6):2749–2759. doi:10.1016/j.juro.2009.01.098

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Bokobza S, Li J, Moazzam M, Chen J, Mansel RE, Jiang WG (2010) Bone morphogenetic protein-10 (BMP-10) inhibits aggressiveness of breast cancer cells and correlates with poor prognosis in breast cancer. Cancer Sci 101(10):2137–2144. doi:10.1111/j.1349-7006.2010.01648.x

    Article  CAS  PubMed  Google Scholar 

  • Yoshimatsu Y, Lee YG, Akatsu Y, Taguchi L, Suzuki HI, Cunha SI, Maruyama K, Suzuki Y, Yamazaki T, Katsura A, Oh SP, Zimmers TA, Lee SJ, Pietras K, Koh GY, Miyazono K, Watabe T (2013) Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1310479110

    PubMed Central  PubMed  Google Scholar 

  • Young K, Conley B, Romero D, Tweedie E, O’Neill C, Pinz I, Brogan L, Lindner V, Liaw L, Vary CP (2012) BMP9 regulates endoglin-dependent chemokine responses in endothelial cells. Blood 120(20):4263–4273. doi:10.1182/blood-2012-07-440784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Ye L, Wu L, Deng X, Yang Y, Jiang WG (2013) Expression of bone morphogenetic protein-10 (BMP10) in human urothelial cancer of the bladder and its effects on the aggressiveness of bladder cancer cells in vitro. Anticancer Res 33(5):1917–1925

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr Emmnuelle Tillet, Dr Daniel Vittet, and Dr Jean-Jacques Feige for helpful discussions.

This work was supported by Inserm (U1036), CEA (iRTSV/BCI and LETI/DTBS), UJF, Association pour la Recherche sur le Cancer (postdoctoral grant to G.M. and grant N° SFI20111203720), the Groupement d’Entreprises Françaises de Lutte contre le Cancer (GEFLUC) Dauphiné-Savoie, the Comité Départemental de la Loire et de l’Isère de la Ligue contre le cancer, and AMRO (Association Malades du Rendu-Osler).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Bailly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Bailly, S. (2014). BMP9, BMP10, and ALK1: An Emerging Vascular Signaling Pathway with Therapeutic Applications. In: Feige, JJ., Pagès, G., Soncin, F. (eds) Molecular Mechanisms of Angiogenesis. Springer, Paris. https://doi.org/10.1007/978-2-8178-0466-8_5

Download citation

Publish with us

Policies and ethics