Skip to main content

Improving Recurrent Neural Networks with Predictive Propagation for Sequence Labelling

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

  • 3722 Accesses

Abstract

Recurrent neural networks (RNNs) is a useful tool for sequence labelling tasks in natural language processing. Although in practice RNNs suffer a problem of vanishing/exploding gradient, their compactness still offers efficiency and make them less prone to overfitting. In this paper we show that by propagating the prediction of previous labels we can improve the performance of RNNs while keeping the number of parameters in RNNs unchanged and adding only one more step for inference. As a result, the models are still more compact and efficient than other models with complex memory gates. In the experiment, we evaluate the idea on optical character recognition and Chunking which achieve promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.seas.upenn.edu/~taskar/ocr/.

References

  1. Chen, T., Singh, S., Taskar, B., Guestrin, C.: Efficient second-order gradient boosting for conditional random fields. In: 18th International Conference on Artificial Intelligence and Statistics, vol. 38, pp. 147–155. PMLR, San Diego (2015)

    Google Scholar 

  2. Cherla, S., Tran, S.N., d’Garcez, A., Weyde, T.: Discriminative learning and inference in the recurrent temporal RBM for melody modelling. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

    Google Scholar 

  3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)

    Google Scholar 

  4. Collins, M.: Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In: ACL-2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 1–8. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

  5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  6. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

    MATH  Google Scholar 

  7. Daumé III, H., Langford, J., Marcu, D.: Search-based structured prediction. Mach. Learn. 75(3), 297–325 (2009)

    Article  Google Scholar 

  8. Dietterich, T.G., Hao, G., Ashenfelter, A.: Gradient tree boosting for training conditional random fields. J. Mach. Learn. Res. 9(2), 2113–2139 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Do, T., Artieres, T.: Neural conditional random fields. In: 13th International Conference on Artificial Intelligence and Statistics, vol. 9, pp. 177–184. PMLR, Sardinia (2010)

    Google Scholar 

  10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28, 337–407 (2000)

    Article  MathSciNet  Google Scholar 

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: 13th International Conference on Artificial Intelligence and Statistics, vol. 9, pp. 249–256. PMLR, Sardinia (2010)

    Google Scholar 

  13. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM networks. In: 2005 IEEE International Joint Conference on Neural Networks, Montreal, Quebec, Canada, vol. 4, pp. 2047–2052 (2005)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. CoRR abs/1508.01991 (2015)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  17. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: 18th International Conference on Machine Learning, pp. 282–289. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  18. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF. In: 54th Annual Meeting of the Association for Computational Linguistics, pp. 1064–1074. Association for Computational Linguistics (2016)

    Google Scholar 

  19. Nguyen, N., Guo, Y.: Comparisons of sequence labeling algorithms and extensions. In: 24th International Conference on Machine Learning, pp. 681–688. ACM, New York (2007)

    Google Scholar 

  20. Peng, F., McCallum, A.: Information extraction from research papers using conditional random fields. Inf. Process. Manag. 42(4), 963–979 (2006)

    Article  Google Scholar 

  21. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. In: Readings in Speech Recognition, pp. 267–296. Elsevier, San Francisco (1990)

    Chapter  Google Scholar 

  22. Sun, X., Morency, L.P., Okanohara, D., Tsujii, J.: Modeling latent-dynamic in shallow parsing: a latent conditional model with improved inference. In: 22nd International Conference on Computational Linguistics, pp. 841–848. Association for Computational Linguistics, Stroudsburg (2008)

    Google Scholar 

  23. Sutton, C., McCallum, A., Rohanimanesh, K.: Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. J. Mach. Learn. Res. 8, 693–723 (2007)

    MATH  Google Scholar 

  24. Suzuki, J., Isozaki, H.: Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. In: ACL-2008: HLT, pp. 665–673. The Association for Computer Linguistics (2008)

    Google Scholar 

  25. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: Advances in Neural Information Processing Systems, vol. 16, p. 25 (2004)

    Google Scholar 

  26. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Tsuruoka, Y., Miyao, Y., Kazama, J.: Learning with lookahead: can history-based models rival globally optimized models? In: 15th Conference on Computational Natural Language Learning, pp. 238–246. Association for Computational Linguistics, Stroudsburg (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Son N. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, S.N., Zhang, Q., Nguyen, A., Vu, XS., Ngo, S. (2018). Improving Recurrent Neural Networks with Predictive Propagation for Sequence Labelling. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics