Skip to main content

Mind-Body Wellness Program Benefits

  • Chapter
  • First Online:
Clinical Autonomic and Mitochondrial Disorders

Abstract

To ensure that the supplements recommended with the Mind-Body Wellness Program do not add to stress through contraindications, the contraindications are described. For example, alpha-lipoic acid may lower resting blood pressure, contraindicating it for patients with low resting pressure. The recommended supplements and lifestyles form this kernel of a Wellness Program. The weight of scientifically rigorous and statistically significant evidence behind this program is brought to bear in this chapter as it subserves functional medicine as well as clinical medicine. For example, additions to this kernel that help to tailor the program to specific conditions are presented. For example, by adding cannabidiol, the program is customized for pain management (including fibromyalgia) or anxiety. Neurofeedback is also introduced as another means of treating P&S imbalance, as an adjunct to the program.

A series of quality of life questionnaires, specific for autonomic dysfunction conditions (e.g., diabetes, Ehlers-Danlos syndrome, and autonomic neuropathy), are presented to help in the clinic with diagnoses and therapy planning. To further support therapy planning, examples of the program’s application to various therapies and diseases are discussed, including: (1) evidence that supplements and nutraceuticals, augmented by the program, help to improve pharmacology in those patients that respond to the nutraceuticals (i.e., omega-3s help to close the Statin Gap and help to treat atherosclerosis); (2) evidence that various antioxidant treatments, augmented by the program, may treat atrial fibrillation or neurogenic orthostatic hypotension; (3) evidence that the program treats anxiety, depression-anxiety syndromes, PTSD, ADD/ADHD, some forms of migraine headache, chronic fatigue, and persistent fatigue by helping to restore and establish proper brain perfusion and energy production; (4) evidence that reducing stress (both oxidative and psychosocial) as part of the program helps to treat autonomic dysfunction and small fiber neuropathy, as well as cardiovascular diseases and cancer (including breast cancer); (5) forms of hypertension, specifically, hypertension secondary to parasympathetic excess and hypertension secondary to orthostatic dysfunction, are presented with therapy options; (6) mitochondrial dysfunction associated with neurodegenerative disorders is presented with therapy options; and (7) longevity which is addressed through a discussion of telomere length and its maintenance with the program, including fish oils and antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Illustration by Elysian Creative Studio, www.elysiancreativestudio.com, Lizzy Colombo.

  2. 2.

    First consult your physician. Adult RDAs: folic acid (B9) = 400 to 800 μg, thiamin (B1) = 1.1 to 1.6 mg, riboflavin (B2) = 1.1 to 1.6 mg, niacin (B3) = 14 to 18 mg, pantothenic acid (B5) = 5 to 7 mg, vitamin B6 = 1.3 to 2.0 mg, vitamin B12 = 2.4 to 2.8 μg (sublingual preferred), magnesium = 300 to 400 mg, vitamin D = 600 to 800 IU, and calcium = 1000 to 1200 mg.

  3. 3.

    The neural tube is the foundation of the nervous system occurring in utero by the fourth week of pregnancy. As the neural plate folds and forms the neural tube, separating from the epidermis, the central nervous system begins development from the neural tube, and, among other structures, the peripheral nervous system is formed from the epidermis.

  4. 4.

    Ehlers-Danlos is a connective tissue disorder marked by hyper-flexibility and “elastic skin” which bruises easily due to “weak” blood vessels and is well known to involve the P&S nervous systems. It is considered a hereditary disease.

  5. 5.

    BP = blood pressure; HRDB = heart rate response to deep breathing; VR = Valsalva ratio

  6. 6.

    Could be substituted for results of quantitative sudomotor axon reflex test.

  7. 7.

    Phases refer to components of the Valsalva maneuver: IIe and IIl = early and late portions, respectively, of phase II.

  8. 8.

    Extreme or irrational fear of crowded spaces or enclosed public places.

  9. 9.

    Patients with anxiety-like symptoms have conditions that include the same symptoms as anxiety, but they are either not fully relieved by anxiety therapy or have documented additional dysfunction (i.e., P&S dysfunction that causes poor brain perfusion) that may lead to similar or the same symptoms.

  10. 10.

    There is also a possible genetic predisposition to autonomic dysfunction, including PE, which may underlie anxiety.

  11. 11.

    Folate deficiency is associated with problems in cognition, mood, psychosis, and anxiety.

  12. 12.

    Polypharmacy is defined as more than one drug prescribed at the same.

  13. 13.

    As a comprehensive assessment tool endorsed by both the American Psychological Association and the International Society for Neurofeedback and Research, QEEG is used by qualified healthcare professionals to objectively and scientifically evaluate a patient’s brain wave function to determine whether brain wave patterns are abnormal and, if so, where and why these abnormalities occur.

  14. 14.

    Type A fibers are the thickest and fastest conducting. They are myelinated, with diameters of 1.5–20 microns and conduction speeds of 4–120 m/sec. They are the sensory or motor fibers found in the somatic nerves; examples include skeletomotor fibers, fusimotor fibers, and afferent fibers to the skin. They comprise four subgroups, from highest to lowest speed: α, β, γ, and δ. The A fibers found in the ANS are Aδ.

  15. 15.

    Type B fibers are medium in size, i.e., they are smaller than type A fibers but larger than type C fibers. Type B fibers are myelinated, with diameters of 1.0–3.5 microns and conduction speeds of 3–15 m/sec; examples include preganglionic autonomic efferents. In the ANS, they constitute the white communicating branches (preganglionic afferents) of the sympathetic chain.

  16. 16.

    Type C fibers are the smallest and thinnest of the nerve fibers. They are nonmyelinated, with diameters of 0.1–2 microns and conduction speeds 0.5–4 m/sec; examples include postganglionic autonomic efferents and afferent fibers to the skin. In fact, these constitute the majority of the ANS fibers in the body, e.g., the afferent amyelinated fibers of the visceral nerves and the sympathetic postganglionic nerves.

  17. 17.

    Respiratory Frequency area (RFa) is the measured parameter that is the measure of parasympathetic activity.

  18. 18.

    Dynamic autonomic responses are difficult to document, because most medical tests are performed with the patient at rest (sitting or supine). However, most autonomic dysfunctions are dynamic and require dynamic tests to document them.

  19. 19.

    In small amounts, these ROS are beneficial in “burning the trash” (waste products and worn membranes) and helping the immune systems to “burn out” invaders attempting to make one sick.

  20. 20.

    The reason why people who faint fall down is that once horizontal, the brain and the heart are at the same level; therefore, the brain is fully perfused. If while upright all day long the brain is only marginally perfused, the brain is not fully awake. Once supine, ready for sleep, the brain is finally fully perfused and is now fully awake, even though the rest of the body is ready for sleep. If based on subclinical or clinical forms of orthostatic dysfunction, syncope, or PE, falling asleep is a problem, then lying down for 15–20 minutes about 2 hours before bedtime may help to shorten the time it takes to fall asleep, because once fully perfused the brain is able to process the day and prepare for sleep normally.

  21. 21.

    Clinical doses of antidepressants, used for anticholinergic purposes, often induce additional (secondary) symptoms associated with too much anticholinergic. Remember, the P&S systems are like a pendulum; they cannot be altered with force, only gentle nudges.

  22. 22.

    An ejection fraction greater than 45% or 50%.

  23. 23.

    Although very easy elliptical machine workouts, swimming, etc., are also zero impact, they tend to elevate HR and BP too fast and may be perceived as stresses.

  24. 24.

    ALA exists as two enantiomers: r- or s-. (R)ALA is much more active than (s)ALA, and neither requires a prescription. The (r + s)ALA is the less expensive and less effective form.

  25. 25.

    Ragged-red fibers – clumps of diseased mitochondria accumulate in the subsarcolemmal regions’ muscle fibers and appear as “ragged-red fibers” when the muscle is stained with modified Gömöri trichrome stain. It is a symptom of progressive myoclonic epilepsy. In fact, some believe that migraine with spreading depression and epilepsy are two ends of the same spectrum.

  26. 26.

    In the brain, DA affects emotions, movements, and your sensations of pleasure and pain. Too little DA in the brain may cause muscle cramps, spasms, or tremors. Aches and pains and in the extreme Parkinson’s disease. Too much DA in the brain is linked to suspicious personality, paranoia, and withdrawal from social situations. Drugs, such as amphetamines and cocaine, cause buildup of DA, which leads to drug-induced psychosis or schizophrenia.

  27. 27.

    Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced by several plants in response to injury or when the plant is under attack by pathogens such as bacteria or fungi. Sources of resveratrol in food include the skin of grapes, blueberries, raspberries, mulberries.

  28. 28.

    AICARA is an analog of adenosine monophosphate (AMP) that is capable of stimulating AMP-dependent protein kinase (AMPK) activity.

  29. 29.

    Bezafibrate is a fibrate drug that is an agonist of PPARα. It is primarily used as a lipid-lowering agent to treat hyperlipidemia. It helps to lower LDL cholesterol and triglyceride in the blood and increase HDL.

  30. 30.

    Nicotinamide riboside is a pyridine-nucleoside form of vitamin B3 that functions as a precursor to nicotinamide adenine dinucleotide or NAD+.

  31. 31.

    To use the car analogy the person is “riding the brakes” (PE) and must “over-rev the engine” (SE) to get to speed or go anywhere.

  32. 32.

    In general, it takes 2–3 months (depending on physiologic age; the older or sicker, the longer) for the P&S nervous systems to fully adapt to a new condition, including changing or titrating therapy, changing lifestyle, or responding to a new disease or injury (whether physiologic or psychologic).

References

  1. Ajabshir S, Asif A, Nayer A. The effects of vitamin D on the renin-angiotensin system. J Nephropathol. 2014;3(2):41–3. https://doi.org/10.12860/jnp.2014.09.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92. Epub 2007 Jan 18.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen BH, Gold DR. Mitochondrial cytopathy in adults: what we know so far. Cleve Clin J Med. 2001;68(7):625–42.

    Article  CAS  PubMed  Google Scholar 

  4. Vanderplasschen W, et al. Poly substance use and mental health among individuals presenting for substance abuse treatment. Science and society series. Ghent: Academia Press; 2012.

    Google Scholar 

  5. Yankey BA, Rothenberg R, Strasser S, Ramsey-White K, Okosun IS. Effect of marijuana use on cardiovascular and cerebrovascular mortality: a study using the National Health and Nutrition Examination Survey linked mortality file. Eur J Prev Cardiol. 2017;24(17):1833–40. https://doi.org/10.1177/2047487317723212. Epub 2017 Aug 8.

    Article  PubMed  Google Scholar 

  6. Desbois AC, Cacoub P. Cannabis-associated arterial disease. Ann Vasc Surg. 2013;27(7):996–1005. https://doi.org/10.1016/j.avsg.2013.01.002. Epub 2013 Jul 10. Review.

    Article  PubMed  Google Scholar 

  7. Thomas G, Kloner RA, Rezkalla S. Adverse cardiovascular, cerebrovascular, and peripheral vascular effects of marijuana inhalation: what cardiologists need to know. Am J Cardiol. 2014;113(1):187–90. https://doi.org/10.1016/j.amjcard.2013.09.042. Epub 2013 Oct 5. Review.

    Article  CAS  PubMed  Google Scholar 

  8. Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Huestis MA. The cannabinoid CB1 receptor antagonist rimonabant attenuates the hypotensive effect of smoked marijuana in male smokers. Am Heart J. 2006;151(3):754.e1–5.

    Article  CAS  Google Scholar 

  9. Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001;103(23):2805–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mukamal KJ, Maclure M, Muller JE, Mittleman MA. An exploratory prospective study of marijuana use and mortality following acute myocardial infarction. Am Heart J. 2008;155(3):465–70. https://doi.org/10.1016/j.ahj.2007.10.049.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mehra R, Moore BA, Crothers K, Tetrault J, Fiellin DA. The association between marijuana smoking and lung cancer: a systematic review. Arch Intern Med. 2006;166(13):1359–67. Review.

    Article  CAS  PubMed  Google Scholar 

  12. Korantzopoulos P, Liu T, Papaioannides D, Li G, Goudevenos JA. Atrial fibrillation and marijuana smoking. Int J Clin Pract. 2008;62(2):308–13. Epub 2007 Nov 21. Review.

    Article  CAS  PubMed  Google Scholar 

  13. Korantzopoulos P. Marijuana smoking is associated with atrial fibrillation. Am J Cardiol. 2014;113(6):1085–6. https://doi.org/10.1016/j.amjcard.2014.01.001. Epub 2014 Jan 8.

    Article  PubMed  Google Scholar 

  14. Hackam DG. Cannabis and stroke: systematic appraisal of case reports. Stroke. 2015;46(3):852–6. https://doi.org/10.1161/STROKEAHA.115.008680. Review.

    Article  CAS  PubMed  Google Scholar 

  15. Desbois AC, Cacoub P. Cannabis-associated arterial disease. Ann Vasc Surg. 2013;27(7):996–1005. https://doi.org/10.1016/j.avsg.2013.01.002. Epub 2013 Jul 10. Review.

    Article  PubMed  Google Scholar 

  16. Shi H, Enriquez A, Rapadas M, Martin EMMA, Wang R, Moreau J, Lim CK, Szot JO, Ip E, Hughes JN, Sugimoto K, Humphreys DT, McInerney-Leo AM, Leo PJ, Maghzal GJ, Halliday J, Smith J, Colley A, Mark PR, Collins F, Sillence DO, Winlaw DS, Ho JWK, Guillemin GJ, Brown MA, Kikuchi K, Thomas PQ, Stocker R, Giannoulatou E, Chapman G, Duncan EL, Sparrow DB, Dunwoodie SL. NAD deficiency, congenital malformations, and niacin supplementation. N Engl J Med. 2017;377(6):544–52. https://doi.org/10.1056/NEJMoa1616361.

    Article  CAS  PubMed  Google Scholar 

  17. Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22:31–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Huang J-Y, Hirschey MD, Shimazu T, Ho L, Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta. 2010;1804:1645–51.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng H-L, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100:10794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vander Heiden MG. Metabolism and congenital malformations – NAD’s effects on development. N Engl J Med. 2017;377(6):509–11. https://doi.org/10.1056/NEJMp1707487.

    Article  PubMed  Google Scholar 

  21. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196–201. https://doi.org/10.1016/j.mayocp.2012.10.013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc. 2012;87(12):1196–201. https://doi.org/10.1016/j.mayocp.2012.10.013.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Treister R, O’Neil K, Downs HM, Oaklander AL. Validation of the composite autonomic symptom scale 31 (COMPASS-31) in patients with and without small fiber polyneuropathy. Eur J Neurol. 2015;22(7):1124–30. https://doi.org/10.1111/ene.12717. Epub 2015 Apr 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowling A, Bond M, Jenkinson C, Lamping DL. Short Form 36 (SF-36) health survey questionnaire: which normative data should be used? Comparisons between the norms provided by the Omnibus Survey in Britain, the Health Survey for England and the Oxford Healthy Life Survey. J Public Health Med. 1999;21(3):255–70.

    Article  CAS  PubMed  Google Scholar 

  25. Hunt SM, McKenna SP, McEwen J, Backett EM, Williams J, Papp E. A quantitative approach to perceived health status: a validation study. J Epidemiol Community Health. 1980;34(4):281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. https://www.ehlers-danlos.com/assessing-joint-hypermobility/

  27. Naal FD, Hatzung G, Müller A, Impellizzeri F, Leunig M. Validation of a self-reported Beighton score to assess hypermobility in patients with femoroacetabular impingement. Int Orthop. 2014;38(11):2245–50. https://doi.org/10.1007/s00264-014-2424-9. Epub 2014 Jul 5.

    Article  PubMed  Google Scholar 

  28. Smits-Engelsman B, Klerks M, Kirby A. Beighton score: a valid measure for generalized hypermobility in children. J Pediatr. 2011;158(1):119–23, 123.e1–4. https://doi.org/10.1016/j.jpeds.2010.07.021. Epub 2010 Sep 17.

    Article  Google Scholar 

  29. Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.

    Article  Google Scholar 

  30. Low PA. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc. 1993;68(8):748–52.

    Article  CAS  PubMed  Google Scholar 

  31. Nabavi SM, Daglia M, Braidy N, Nabavi SF. Natural products, micronutrients, and nutraceuticals for the treatment of depression: a short review. Nutr Neurosci. 2017;20(3):180–94. https://doi.org/10.1080/1028415X.2015.1103461. Epub 2015 Nov 27.

    Article  CAS  PubMed  Google Scholar 

  32. Deepmala, Slattery J, Kumar N, Delhey L, Berk M, Dean O, Spielholz C, Frye R. Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev. 2015;55:294–321. https://doi.org/10.1016/j.neubiorev.2015.04.015. Epub 2015 May 6.

    Article  CAS  PubMed  Google Scholar 

  33. Mathew SJ. Treatment-resistant depression: recent developments and future directions. Depress Anxiety. 2008;25(12):989–92. https://doi.org/10.1002/da.20540.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kumar A, Chanana P. Role of nitric oxide in stress-induced anxiety: from pathophysiology to therapeutic target. Vitam Horm. 2017;103:147–67. https://doi.org/10.1016/bs.vh.2016.09.004. Epub 2016 Dec 2.

    Article  CAS  PubMed  Google Scholar 

  35. Müller CP, Reichel M, Mühle C, Rhein C, Gulbins E, Kornhuber J. Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta. 2015;1851(8):1052–65. https://doi.org/10.1016/j.bbalip.2014.12.014. Epub 2014 Dec 24.

    Article  CAS  PubMed  Google Scholar 

  36. Hennebelle M, Champeil-Potokar G, Lavialle M, Vancassel S, Denis I. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutr Rev. 2014;72(2):99–112. https://doi.org/10.1111/nure.12088. Epub 2014 Jan 13.

    Article  PubMed  Google Scholar 

  37. Appleton KM, Sallis HM, Perry R, Ness AR, Churchill R. ω-3 fatty acids for major depressive disorder in adults: an abridged Cochrane. BMJ Open. 2016;6(3):e010172. https://doi.org/10.1136/bmjopen-2015-010172.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vesco AT, Lehmann J, Gracious BL, Arnold LE, Young AS, Fristad MA. Omega-3 supplementation for psychotic mania and comorbid anxiety in children. J Child Adolesc Psychopharmacol. 2015;25(7):526–34. https://doi.org/10.1089/cap.2013.0141. Epub 2015 Aug 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ball J, Carrington MJ, McMurray JJ, Stewart S. Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol. 2013;167:1807–24.

    Article  PubMed  Google Scholar 

  40. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–6.

    Article  PubMed  Google Scholar 

  41. Fenger-Grøn M, Overvad K, Tjønneland A, Frost L. Lean body mass is the predominant anthropometric risk factor for atrial fibrillation. J Am Coll Cardiol. 2017;69(20):2488–97. https://doi.org/10.1016/j.jacc.2017.03.558.

    Article  PubMed  Google Scholar 

  42. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nattel S. Atrial fibrillation and body composition: is it fat or lean that ultimately determines the risk? J Am Coll Cardiol. 2017;69(20):2498–501. https://doi.org/10.1016/j.jacc.2017.03.566.

    Article  PubMed  Google Scholar 

  44. Colombo J, Arora RR, DePace NL, Vinik AI. Clinical autonomic dysfunction: measurement, indications, therapies, and outcomes. New York: Springer Science + Business Media; 2014.

    Google Scholar 

  45. Garrey WE. The nature of fibrillatory contraction of the heart: its relation to tissue mass and form. Am J Phys. 1914;33:397–414.

    Article  Google Scholar 

  46. Moore EN, Spear JF. Electrophysiological studies on atrial fibrillation. Heart Vessels Suppl. 1987;2:32–9.

    CAS  PubMed  Google Scholar 

  47. Zou R, Kneller J, Leon LJ, Nattel S. Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium. Am J Physiol Heart Circ Physiol. 2005;289:H1002–12.

    Article  CAS  PubMed  Google Scholar 

  48. Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.

    Article  PubMed  Google Scholar 

  49. https://www.psychiatry.org/psychiatrists/practice/dsm

  50. Rowney J, Hermida T, Malone D. Definition and etiology. 2010. http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/psychiatry-psychology/anxiety-disorder/

  51. Weissman M, Wickramaratne P, Nomura Y, et al. Offspring of depressed parents: 20 years later. Am J Psychiatry. 2006;163:1001–8.

    Article  PubMed  Google Scholar 

  52. Cardinali DP. Autonomic nervous system: basic and clinical aspects. Cham: Springer International Publishing AG; 2018.

    Book  Google Scholar 

  53. Grases G, Colom MA, Fernandez RA, Costa-Bauzá A, Grases F. Evidence of higher oxidative status in depression and anxiety. Oxidative Med Cell Longev. 2014;2014:430216. https://doi.org/10.1155/2014/430216. Epub 2014 Apr 29.

    Article  CAS  Google Scholar 

  54. McIntyre RS, Soczynska JK, Lewis GF, MacQueen GM, Konarski JZ, Kennedy SH. Managing psychiatric disorders with antidiabetic agents: translational research and treatment opportunities. Expert Opin Pharmacother. 2006;7(10):1305–21.

    Article  CAS  PubMed  Google Scholar 

  55. Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M. N-acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry. 2016;77(4):e457–66. https://doi.org/10.4088/JCP.15r09984.

    Article  PubMed  Google Scholar 

  56. Kinrys G, Coleman E, Rothstein E. Natural remedies for anxiety disorders: potential use and clinical applications. Depress Anxiety. 2009;26(3):259–65. https://doi.org/10.1002/da.20460.

    Article  PubMed  Google Scholar 

  57. Lakhan SE, Vieira KF. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J. 2010;9:42. https://doi.org/10.1186/1475-2891-9-42.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegaliński E, Pera J, Filip M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67(3):569–80. https://doi.org/10.1016/j.pharep.2014.12.015. Epub 2015 Jan 5.

    Article  CAS  PubMed  Google Scholar 

  59. Gulati K, Rai N, Ray A. Nitric oxide and anxiety. Vitam Horm. 2017;103:169–92. https://doi.org/10.1016/bs.vh.2016.09.001. Epub 2016 Oct 31.

    Article  CAS  PubMed  Google Scholar 

  60. Qato DM, Ozenberger K, Olfson M. Prevalence of prescription medications with depression as a potential adverse effect among adults in the United States. JAMA. 2018;319(22):2289. https://doi.org/10.1001/jama.2018.6741.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Haas H, Panula P. The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4:121–30.

    Article  CAS  PubMed  Google Scholar 

  62. Piña IL, Di Palo KE, Ventura HO. Psychopharmacology and cardiovascular disease. J Am Coll Cardiol. 2018;71(20):2346–59.

    Article  PubMed  CAS  Google Scholar 

  63. American Heart Association Nutrition Committee, Lichtenstein AH, Appel LJ, Brands M, Carnethon M, Daniels S, Franch HA, Franklin B, Kris-Etherton P, Harris WS, Howard B, Karanja N, Lefevre M, Rudel L, Sacks F, Van Horn L, Winston M, Wylie-Rosett J. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114(1):82–96. Epub 2006 Jun 19. Erratum in: Circulation. 2006 Dec 5;114(23):e629. Circulation. 2006 Jul 4;114(1):e27.

    Article  Google Scholar 

  64. Nemeroff CB, Evans DL. Correlation between the dexamethasone suppression test in depressed patients and clinical response. Am J Psychiatry. 1984;141:247–9.

    Article  CAS  PubMed  Google Scholar 

  65. Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin releasing factor-like immunoreactivity in depressed patients. Science. 1984;226:1342–4.

    Article  CAS  PubMed  Google Scholar 

  66. Musselman DL, Tomer A, Manatunga AK, et al. Exaggerated platelet reactivity in major depression. Am J Psychiatry. 1996;153:1313–7.

    Article  CAS  PubMed  Google Scholar 

  67. Carney RM, Saunders RD, Freedland KE, Stein P, Rich MW, Jaffe AS. Association of depression with reduced heart rate variability in coronary artery disease. Am J Cardiol. 1995;76(8):562–4.

    Article  CAS  PubMed  Google Scholar 

  68. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99(16):2192–217.

    Article  CAS  PubMed  Google Scholar 

  69. Khan SG, Melikian N, Shabeeh H, Cabaco AR, Martin K, Khan F, O’Gallagher K, Chowienczyk PJ, Shah AM. The human coronary vasodilatory response to acute mental stress is mediated by neuronal nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2017;313(3):H578–83. https://doi.org/10.1152/ajpheart.00745.2016. Epub 2017 Jun 23.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Preisig M, Waeber G, Mooser V, Vollenweider P. PsyCoLaus: mental disorders and cardiovascular diseases: spurious association? Rev Med Suisse. 2011;7:2127–9.

    CAS  PubMed  Google Scholar 

  71. Chaddha A, Robinson EA, Kline-Rogers E, Alexandris-Souphis T, Rubenfire M. Mental health and cardiovascular disease. Am J Med. 2016;129:1145–8.

    Article  PubMed  Google Scholar 

  72. Rugulies R. Depression as a predictor for coronary heart disease: a review and meta-analysis1. Am J Prev Med. 2002;23:51–61.

    Article  PubMed  Google Scholar 

  73. Denollet J, Maas K, Knottnerus A, Keyzer JJ, Pop VJ. Anxiety predicted premature all-cause and cardiovascular death in a 10-year follow-up of middle-aged women. J Clin Epidemiol. 2009;62:452–6.

    Article  PubMed  Google Scholar 

  74. Blumenthal JA, Babyak MA, O’Connor C, Keteyian S, Landzberg J, Howlett J, et al. Effects of exercise training on depressive symptoms inpatients with chronic heart failure: the HF-ACTION randomized trial. JAMA. 2012;308:465–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Janszky I, Ahnve S, Lundberg I, Hemmingsson T. Early-onset depression, anxiety, and risk of subsequent coronary heart disease: 37- year follow-up of 49,321 young Swedish men. J Am Coll Cardiol. 2010;56:31–7.

    Article  PubMed  Google Scholar 

  76. Phillips AC, Batty GD, Gale CR, et al. Generalized anxiety disorder, major depressive disorder, and their comorbidity as predictors of all-cause and cardiovascular mortality: the Vietnam experience study. Psychosom Med. 2009;71:395–403.

    Article  CAS  PubMed  Google Scholar 

  77. Rutledge T, Linke SE, Krantz DS, et al. Comorbid depression and anxiety symptoms as predictors of cardiovascular events: results from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Psychosom Med. 2009;71:958–64.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chida Y, Steptoe A. The association of anger and hostility with future coronary heart disease: a meta-analytic review of prospective evidence. J Am Coll Cardiol. 2009;53:936–46.

    Article  PubMed  Google Scholar 

  79. Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D. Emotional and physical precipitants of ventricular arrhythmia. Circulation. 2002;106:1800–5.

    Article  PubMed  Google Scholar 

  80. Krantz DS, Kop WJ, Santiago HT, Gottdiener JS. Mental stress as a trigger of myocardial ischemia and infarction. Cardiol Clin. 1996;14(2):271–87.

    Article  CAS  PubMed  Google Scholar 

  81. Krantz DS, McCeney MK. Effects of psychological and social factors on organic disease: a critical assessment of research on coronary heart disease. Annu Rev Psychol. 2002;53:341–69.

    Article  PubMed  Google Scholar 

  82. Karasek R, Baker D, Marxer F, Ahlbom A, Theorell T. Job decision latitude, job demands, and cardiovascular disease: a prospective study of Swedish men. Am J Public Health. 1981;71:694–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Greenlund KJ, Kiefe CI, Giles WH, Liu K. Associations of job strain and occupation with subclinical atherosclerosis: the CARDIA study. Ann Epidemiol. 2010;20:323–31.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Eller NH, Netterstrøm B, Gyntelberg F, et al. Work-related psychosocial factors and the development of ischemic heart disease: a systematic review. Cardiol Rev. 2009;17:83–97.

    Article  PubMed  Google Scholar 

  85. Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake. N Engl J Med. 1996;334:413–9.

    Article  CAS  PubMed  Google Scholar 

  86. Ader R, Felten DL, Cohen N, editors. Psychoneuroimmunology, vol. 2. Waltham Abbey: Academic Press; 2000. ISBN 978-0-12-0443147.

    Google Scholar 

  87. Rosengren A, Hawken S, Ôunpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.

    Article  PubMed  Google Scholar 

  88. Orth-Gomer K, Wamala SP, Horsten M, Schenck-Gustafsson K, Schneiderman N, Mittleman MA. Marital stress worsens prognosis in women with coronary heart disease: the Stockholm Female Coronary Risk Study. JAMA. 2000;284:3008–14.

    Article  CAS  PubMed  Google Scholar 

  89. Gabbay FH, Krantz DS, Kop WJ, et al. Triggers of myocardial ischemia during daily life in patients with coronary artery disease: physical and mental activities, anger and smoking. J Am Coll Cardiol. 1996;27:585–92.

    Article  CAS  PubMed  Google Scholar 

  90. Gullette EC, Blumenthal JA, Babyak M, et al. Effects of mental stress on myocardial ischemia during daily life. JAMA. 1997;277:1521–6.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang W, Babyak M, Krantz DS, et al. Mental stress–induced myocardial ischemia and cardiac events. JAMA. 1996;275:1651–6.

    Article  CAS  PubMed  Google Scholar 

  92. Williams RB, Haney TL, Lee KL, Kong Y-H, Blumenthal JA, Whalen RE. Type A behavior, hostility, and coronary atherosclerosis. Psychosom Med. 1980;42:539–49.

    Article  PubMed  Google Scholar 

  93. Tindle HA, Chang YF, Kuller LH, et al. Optimism, cynical hostility, and incident coronary heart disease and mortality in the Women’s Health Initiative. Circulation. 2009;120:656–62.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mc Donnell CG, Shorten G, Van Pelt FN. Effect of atorvastatin and fluvastatin on the metabolism of midazolam by cytochrome P450 in vitro. Anaesthesia. 2005;60:747–53.

    Article  CAS  PubMed  Google Scholar 

  95. Jiang W, O’Connor C, Silva SG, et al. Safety and efficacy of sertraline for depression in patients with CHF (SADHART-CHF): a randomized, doubleblind, placebo-controlled trial of sertraline for major depression with congestive heart failure. Am Heart J. 2008;156:437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pizzi C, Mancini S, Angeloni L, Fontana F, Manzoli L, Costa G. Effects of selective serotonin reuptake inhibitor therapy on endothelial function and inflammatory markers in patients with coronary heart disease. Clin Pharmacol Ther. 2009;86:527–32.

    Article  CAS  PubMed  Google Scholar 

  97. Beach SR, Kostis WJ, Celano CM, et al. Metaanalysis of selective serotonin reuptake inhibitor associated QTc prolongation. J Clin Psychiatry. 2014;75:e441–9.

    Article  PubMed  Google Scholar 

  98. Pizzi C, Rutjes AWS, Costa GM, Fontana F, Mezzetti A, Manzoli L. Meta-analysis of selective serotonin reuptake inhibitors in patients with depression and coronary heart disease. Am J Cardiol. 2011;107:972–9.

    Article  CAS  PubMed  Google Scholar 

  99. Ho JM, Gomes T, Straus SE, Austin PC, Mamdani M, Juurlink DN. Adverse cardiac events in older patients receiving venlafaxine: a population-based study. J Clin Psychiatry. 2014;75:e552–8.

    Article  CAS  PubMed  Google Scholar 

  100. Shah S, Iqbal Z, White A, White S. Heart and mind: (2) psychotropic and cardiovascular therapeutics. Postgrad Med J. 2005;81:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mackin P. Cardiac side effects of psychiatric drugs. Hum Psychopharmacol Clin Exp. 2008;23(S1):3–14.

    Article  CAS  Google Scholar 

  102. Kovacs D, Arora R. Cardiovascular effects of psychotropic drugs. Am J Ther. 2008;15:474–83.

    Article  PubMed  Google Scholar 

  103. Giardina E-GV, Johnson LL, Vita J, Bigger JT Jr, Brem RF. Effect of imipramine and nortriptyline on left ventricular function and blood pressure in patients treated for arrhythmias. Am Heart J. 1985;109:992–8.

    Article  CAS  PubMed  Google Scholar 

  104. Roose SP, Dalack GW. Cardiovascular effects of bupropion in depressed patients with heart disease. Am J Psychiatry. 1991;148:512.

    Article  CAS  PubMed  Google Scholar 

  105. Roose SP, Glassman AH, Giardina EG, Johnson LL, Walsh BT, Bigger JT Jr. Cardiovascular effects of imipramine and bupropion in depressed patients with congestive heart failure. J Clin Psychopharmacol. 1987;7:247–51.

    Article  CAS  PubMed  Google Scholar 

  106. Vitullo RN, Wharton JM, Allen NB, Pritchett EL. Trazodone-related exercise-induced nonsustained ventricular tachycardia. Chest. 1990;98:247–8.

    Article  CAS  PubMed  Google Scholar 

  107. Boschmans S, Perkin M, Terblanche S, Opie L. The effects of imipramine, mianserin and trazodone on the chronotropic, inotropic and coronary vascular responses in the isolated perfused rat heart. Gen Pharmacol. 1989;20:233–7.

    Article  CAS  PubMed  Google Scholar 

  108. Mazur A, Strasberg B, Kusniec J, Sclarovsky S. QT prolongation and polymorphous ventricular tachycardia associated with trazodone amiodarone combination. Int J Cardiol. 1995;52:27–9.

    Article  CAS  PubMed  Google Scholar 

  109. Libert J, Amoros C, Muzet A, Ehrhart J, Di Nisi J. Effects of triazolam on heart rate level and on phasic cardiac response to noise during sleep. Psychopharmacology. 1988;96:188–93.

    Article  CAS  PubMed  Google Scholar 

  110. Lapane KL, Zierler S, Lasater TM, Barbour MM, Carleton R, Hume AL. Is the use of psychotropic drugs associated with increased risk of ischemic heart disease? Epidemiology. 1995;6:376–81.

    Article  CAS  PubMed  Google Scholar 

  111. Kim YH, Kim HB, Kim DH, Kim JY, Shin HY. Use of hypnotics and the risk of or mortality from heart disease: a meta-analysis of observational studies. Korean J Intern Med. 2017;33(4):727–36. [E-pub ahead of print].

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schneier FR. Social anxiety disorder. N Engl J Med. 2006;355:1029–36.

    Article  CAS  PubMed  Google Scholar 

  113. Hoogwegt MT, Kupper N, Theuns DA, Jordaens L, Pedersen SS. Beta-blocker therapy is not associated with symptoms of depression and anxiety in patients receiving an implantable cardioverter-defibrillator. Europace. 2011;14:74–80.

    Article  PubMed  Google Scholar 

  114. Hammond DC. What is neurofeedback: an update. J Neurother. 2011;15:305–36.

    Article  Google Scholar 

  115. Scott WC, Kaiser D, Othmer S, Sideroff SI. Effects of an EEG biofeedback protocol on a mixed substance abusing population. Am J Drug Alcohol Abuse. 2005;3:1455–69.

    Google Scholar 

  116. Kaiser DA, Othmer S. Effect of neurofeedback on variables of attention in a large multi-center trial. J Neurother. 2000;4(1):5–28.

    Article  Google Scholar 

  117. Demos JN. Getting started with neurofeedback. New York/London: Norton & company; 2005.

    Google Scholar 

  118. Gunkelman JD, Johnstone J. Neurofeedback and the brain. J Adult Dev. 2005;12:93–100.

    Article  Google Scholar 

  119. Kropotov JD, Grin-Yatsenko VA, Ponomarev VA, Chutko LS, Yakovenko EA, Nikishena IS. Changes in EEG spectrograms, event-related potentials and event-related desynchronization induced by relative beta training in ADHD children. J Neurother. 2007;11(2):3–11.

    Article  Google Scholar 

  120. Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N. Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. J Pediatr. 2006;118:1530–40.

    Article  Google Scholar 

  121. Rossiter T. The effectiveness of neurofeedback and stimulant drugs in treating AD/HD: part I. Review of methodological issues. Appl Psychophysiol Biofeedback. 2004;29(2):95–112.

    Article  PubMed  Google Scholar 

  122. Fuchs T, Birbaumer N, Lutzenberger W, Gruzelier JH, Kaiser J. Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate. Appl Psychophysiol Biofeedback. 2003;28(1):1–12.

    Article  PubMed  Google Scholar 

  123. Kotchoubey B, Strehl U, Uhlmann C, Holzapfel S, Konig M, Froscher W, et al. Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsies. 2001;42(3):406–16.

    Article  CAS  Google Scholar 

  124. Putman JA. EEG biofeedback on a female patient stroke patient with depression: a case study. J Neurother. 2001;5(3):27–38.

    Article  Google Scholar 

  125. Hammond DC. Neurofeedback with anxiety and affective disorders. Child Adolesc Psychiatr. 2005;14(1):105–23.

    Article  Google Scholar 

  126. Vanathy S, Sharma PSVN, Kumar KB. The efficacy of alpha and theta neurofeedback training in treatment of generalized anxiety disorder. Indian J Clin Psychol. 1998;25(2):136–43.

    Google Scholar 

  127. Muller HH, Donaldson CCS, Nelson DV, Layman M. Treatment of fibromyalgia incorporating EEG-driven stimulation: a clinical study. J Clin Psychol. 2001;57(7):925–33.

    Google Scholar 

  128. Hammond DC. QEEG-guided neurofeedback in the treatment of obsessive compulsive disorder. J Neurother. 2003;7(2):25–52.

    Article  Google Scholar 

  129. Wilson VE, Peper E, Moss D. Professional issue “the mind room” in Italian soccer training: the use of biofeedback and neurofeedback for optimum performance. Biofeedback. 2006;34:79–810.

    Google Scholar 

  130. Hanslmayr S, Sauseng P, Doppelmayr M, Schabus M, Klimesch W. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl Psychophysiol Biofeedback. 2005;30(1):1–10.

    Article  PubMed  Google Scholar 

  131. Egner T, Strawson E, Gruzelier JH. EEG signature and phenomenology of alpha-theta neurofeedback training versus mock feedback. Appl Psychophysiol Biofeedback. 2002;27:4–18.

    Article  Google Scholar 

  132. Vernon D, Egner T, Nick C, et al. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. J Psychophysiol. 2003;47(1):75–85.

    Article  Google Scholar 

  133. Sokhadze TM, Cannon RL, Trudeau DL. EEG biofeedback as a treatment for substance use disorders: review, rating of efficacy, and recommendations for further research. Appl Psychophysiol Biofeedback. 2008;33(1):1–28.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Frederick JA, Timmermann DL, Russell HL, Lubar JF. EEG coherence effects of audio-visual stimulation (AVS) at dominant alpha frequency. J Neurother. 2005;8(4):25–42.

    Article  Google Scholar 

  135. Burkett VS, Cummins JM, Dickson RM, Skolnick MH. Treatment effects related to EEG-biofeedback for crack cocaine dependency in a faith-based homeless mission. J Neurother. 2004;8(2):138–40.

    Article  Google Scholar 

  136. Masterpasqua F, Healey KN. Neurofeedback in psychological practice. Prof Psychol Res Pract. 2003;34(6):652–6.

    Article  Google Scholar 

  137. Kaiser DA, Othmer S, Scott B. Effect of neurofeedback on chemical dependency treatment. Biofeedback Self Regul. 1999;20(3):304–5.

    Google Scholar 

  138. Peniston EG, Saxby E. Alpha-theta brainwave neurofeedback training: an effective treatment for male and female alcoholics with depression symptoms. Biofeedback Cent. 1995;51(5):685–93.

    Google Scholar 

  139. Hammond DC. The need for individualization in neurofeedback: heterogeneity in qEEG patterns associated with diagnoses and symptoms. Appl Psychophysiol Biofeedback. 2010;35(1):31–6.

    Article  PubMed  Google Scholar 

  140. Ross SM. Neurofeedback: an integrative treatment of substance use disorders. Holist Nurs Pract. 2013;27(4):246–50.

    Article  PubMed  Google Scholar 

  141. Dehghani-Arani F, Rostami R, Nadali H. Neurofeedback training for opiate addiction: improvement of mental health and craving. Appl Psychophysiol Biofeedback. 2013;38:133–41. https://doi.org/10.1007/s10484-013-9218-5.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Peniston EG, Kulkosky PJ. Alpha-theta brainwave training and beta endorphin levels in alcoholics. Alcohol Clin Exp Res. 1989;13:271–9.

    Article  CAS  PubMed  Google Scholar 

  143. Peniston EG, Kulkosky PJ. Alcoholic personality and alpha-theta brainwave training. Med Psychother. 1990;2:37–55.

    Google Scholar 

  144. Peniston EG, Marriman DA, Deming WA, Kulkosky PG. EEG alpha theta brain wave synchronization in Vietnam theater veterans with combat related post traumatic stress disorder and alcohol abuse. Adv Med Psychol. 1993;6:37–49.

    Google Scholar 

  145. Gruzelier J, Egner T. Critical validation studies of neurofeedback. Child Adolesc Psychiatr Clin N Am. 2005;14:83–104.

    Article  PubMed  Google Scholar 

  146. Singer W, Spies JM, McArthur J, Low J, Griffin JW, Nickander KK, Gordon V, Low PA. Prospective evaluation of somatic and autonomic small fibers in selected autonomic neuropathies. Neurology. 2004;62:612–8.

    Article  CAS  PubMed  Google Scholar 

  147. Dabby R, Vaknine H, Gilad R, Djaldetti R, Sadeh M. Evaluation of cutaneous autonomic innervation in idiopathic sensory small-fiber neuropathy. J Peripher Nerv Syst. 2007;12:98–101.

    Article  PubMed  Google Scholar 

  148. Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, Smith AG, Hsieh ST, Mellgren SI, Umapathi T, Ziegler D, Faber CG, Merkies IS. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.

    Article  PubMed  Google Scholar 

  149. Jacobs AM, Cheng D. Management of diabetic small-fiber neuropathy with combination L-methylfolate, methylcobalamin, and pyridoxal 5′-phosphate. Rev Neurol Dis. 2011;8(1–2):39–47.

    PubMed  Google Scholar 

  150. Hovaguimian A, Gibbons CH. Diagnosis and treatment of pain in small fiber neuropathy. Curr Pain Headache Rep. 2011;15(3):193–200. https://doi.org/10.1007/s11916-011-0181-7.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Brannagan TH 3rd, Hays AP, Chin SS, Sander HW, Chin RL, Magda P, Green PH, Latov N. Small-fiber neuropathy/neuronopathy associated with celiac disease: skin biopsy findings. Arch Neurol. 2005;62(10):1574–8.

    Article  PubMed  Google Scholar 

  152. Ho TW, Backonja M, Ma J, Leibensperger H, Froman S, Polydefkis M. Efficient assessment of neuropathic pain drugs in patients with small fiber sensory neuropathies. Pain. 2009;141:19–24.

    Article  CAS  PubMed  Google Scholar 

  153. Ametov AS, Barinov A, Dyck PJ, Hermann R, Kozlova N, Litchy WJ, Low PA, Nehrdich D, Novosadova M, O’Brien PC, Reljanovic M, Samigullin R, Schuette K, Strokov I, Tritschler HJ, Wessel K, Yakhno N, Ziegler D, SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care. 2003;26(3):770–6. Erratum in: Diabetes Care. 2003 Jul;26(7):2227.

    Article  CAS  PubMed  Google Scholar 

  154. Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004;21(2):114–21.

    Article  CAS  PubMed  Google Scholar 

  155. Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA, Munzel U, Yakhno N, Raz I, Novosadova M, Maus J, Samigullin R. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006;29(11):2365–70.

    Article  CAS  PubMed  Google Scholar 

  156. Vinik AI. A medicinal food provides food for thought in managing diabetic neuropathy. Am J Med. 2013;126(2):95–6. https://doi.org/10.1016/j.amjmed.2012.08.008.

    Article  PubMed  Google Scholar 

  157. Head KA. Peripheral neuropathy: pathogenic mechanisms and alternative therapies. Altern Med Rev. 2006;11:294–329.

    PubMed  Google Scholar 

  158. Zhang YF, Ning G. Mecobalamin. Expert Opin Ivestigat Drugs. 2008;17:953–64.

    Article  Google Scholar 

  159. Schrezenmaier C, Singer W, Muenter Swift N, Sletten D, Tanabe J, Low PA. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol. 2007;64:381–6.

    Article  PubMed  Google Scholar 

  160. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  161. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    Article  PubMed  Google Scholar 

  162. Low PA, The Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  163. Joint Editorial Statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.

    Article  Google Scholar 

  164. Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA scientific statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    Article  CAS  PubMed  Google Scholar 

  165. Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physicians. 2005;71:2123–30.

    Google Scholar 

  166. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.

    Google Scholar 

  167. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article  PubMed  Google Scholar 

  168. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    Article  Google Scholar 

  169. Arora RR, Ghosh Dastidar S, Colombo J Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium, Kauai; 29 Oct–1 Nov 2008.

    Google Scholar 

  170. Waheed A, Ali MA, Jurivich DA, et al. Gender differences in longevity and autonomic function. Presented at the Geriatric Medicine Society Meeting, Chicago; 3–7 May 2006.

    Google Scholar 

  171. Arora RR, Aysin E, Aysin B, Colombo J. Therapeutic implications of Sympathetic stimulus in orthostatic patients: measured by spectral domain analysis. AHA Scientific Sessions, Orlando; 4–7 Nov 2007.

    Google Scholar 

  172. Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.

    Article  Google Scholar 

  173. Nemechek P, Ghosh Dastidar S, Colombo J. Early autonomic dysfunction is associated with secondary hypertension in HIV/AIDS patients. American Autonomic Society, St. Thomas, Virgin Islands; 31 Oct–3 Nov 2009.

    Google Scholar 

  174. Nemechek P, Ghosh Dastidar S, Colombo J. HIV/AIDS leads to early cardiovascular autonomic neuropathy. American Autonomic Society, St. Thomas, Virgin Islands, 31 Oct–3 Nov 2009.

    Google Scholar 

  175. Arora RR, Bulgarelli RJ, Hearyman M, Ghosh Dastidar S, Colombo J. Carvedilol reverses standing parasympathetic excess in non-diabetics. American Autonomic Society, St. Thomas, Virgin Islands; 31 Oct–3 Nov 2009.

    Google Scholar 

  176. Nanavati SH, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. US Cardiol. 2010;7(1):47–50.

    Google Scholar 

  177. Vinik AI, Aysin B, Colombo J. Differentiation of autonomic dysfunction by enhanced frequency domain analysis reveals additional stages in the progression of autonomic decline in diabetics. Diabetes Technology Conference, San Francisco; 10–12 Nov 2005.

    Google Scholar 

  178. Boyd GL, Taylor JA, Ovalle F, Stout DG, Aultman M, Garner VM, Morris RE, Witherspoon CD, Albert M, Vetter TR. Prevalence of advanced autonomic dysfunction in patients presenting for retinal surgery. Submitted, Anesthesiology; 2013.

    Google Scholar 

  179. Wani AL, Bhat SA, Ara A. Omega-3 fatty acids and the treatment of depression: a review of scientific evidence. Integr Med Res. 2015;4(3):132–41.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  181. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  182. Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physicians. 2005;71:2123–30.

    Google Scholar 

  183. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60:2504–12.

    Article  CAS  PubMed  Google Scholar 

  184. Bowles EJA, Wellman R, Feigelson HS, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst. 2012;104:1293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lenihan DJ, Cardinale DM. Late cardiac effects of cancer treatment [published correction appears in J Clin Oncol 2012;30:4590]. J Clin Oncol. 2012;30:3657–64.

    Article  PubMed  Google Scholar 

  186. Mukhopadhyay P, Rajesh M, Bátkai S, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol. 2009;296:1466–83.

    Article  CAS  Google Scholar 

  187. Weinstein DM, Mihm MJ, Bauer JA. Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. J Pharmacol Exp Ther. 2000;294:396–401.

    CAS  PubMed  Google Scholar 

  188. Fogli S, Nieri P, Breschi MC. The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage. FASEB J. 2004;18:664–75.

    Article  CAS  PubMed  Google Scholar 

  189. Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab [published correction appears in J Am Coll Cardiol 2016;67:1385]. J Am Coll Cardiol. 2014;63:809–16.

    Article  CAS  PubMed  Google Scholar 

  190. Zhang S, Liu X, Bawa-Khalfe T, et al. Identification of the molecular basis of doxorubicin induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    Article  PubMed  CAS  Google Scholar 

  191. Wan A, Rodrigues B. Endothelial cell cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res. 2016;111:172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hahn VS, Lenihan DJ, Ky B. Cancer therapy induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3:e000665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol. 2009;157:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Milano G, Raucci A, Scopece A, et al. Doxorubicin and trastuzumab regimen induces biventricular failure in mice. J Am Soc Echocardiogr. 2014;27:568–79.

    Article  PubMed  Google Scholar 

  195. Aghajanian H, Cho YK, Manderfield LJ, et al. Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat Commun. 2016;7:12038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wolf MB, Baynes JW. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction. Biochim Biophys Acta. 1760;2006:267–71.

    Google Scholar 

  197. Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, DeMichele A, Fox K, Matro J, Shah P, Clark A, Bradbury A, Narayan V, Carver JR, Tang WHW, Ky B. Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol. 2017;70(2):152–62. https://doi.org/10.1016/j.jacc.2017.05.019. Erratum in: J Am Coll Cardiol. 2017 Nov 28;70(21):2738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Toya T, Hakuno D, Shiraishi Y, Kujiraoka T, Adachi T. Arginase inhibition augments nitric oxide production and facilitates left ventricular systolic function in doxorubicin-induced cardiomyopathy in mice. Physiol Rep. 2014;2:e12130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Hammond J, Balligand J. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol. 2012;52:330–40.

    Article  CAS  PubMed  Google Scholar 

  200. Meinitzer A, Seelhorst U, Wellnitz B, et al. Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health Study). Clin Chem. 2007;53:273–83.

    Article  CAS  PubMed  Google Scholar 

  201. Boger RH, Sullivan LM, Schwedhelm E, et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation. 2009;119:1592–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Dückelmann C, Mittermayer F, Haider DG, Altenberger J, Eichinger J, Wolzt M. Asymmetric dimethylarginine enhances cardiovascular risk prediction in patients with chronic heart failure. Arterioscler Thromb Vasc Biol. 2007;27:2037–42.

    Article  PubMed  CAS  Google Scholar 

  203. Liu X, Hou L, Xu D, et al. Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide. 2016;54:73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Myalgic encephalomyelitis, chronic fatigue syndrome. Centers for Disease Control and Prevention; 3 July 2007.

    Google Scholar 

  205. Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, Bateman L, Baumgarten-Austrheim B, Bell DS, Carlo-Stella N, Chia J, Darragh A, Jo D, Lewis D, Light AR, Marshall-Gradisbik S, Mena I, Mikovits JA, Miwa K, Murovska M, Pall ML, Stevens S. Myalgic encephalomyelitis: international consensus criteria. J Intern Med. 2011;270(4):327–38. https://doi.org/10.1111/j.1365-2796.2011.02428.x. Epub 2011 Aug 22. Review. Erratum in: J Intern Med. 2017 Oct;282(4):353. PMID: 21777306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Carruthers BM. Definitions and aetiology of myalgic encephalomyelitis: how the Canadian consensus clinical definition of myalgic encephalomyelitis works. J Clin Pathol. 2007;60(2):117–9. Epub 2006 Aug 25.

    Article  CAS  PubMed  Google Scholar 

  207. Barnden LR, Kwiatek R, Crouch B, Burnet R, Del Fante P. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome. Neuroimage Clin. 2016;11:530–7. https://doi.org/10.1016/j.nicl.2016.03.017. eCollection 2016. PMID: 27114901.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bested AC, Marshall LM. Review of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: an evidence-based approach to diagnosis and management by clinicians. Rev Environ Health. 2015;30(4):223–49. https://doi.org/10.1515/reveh-2015-0026. Review. PMID: 26613325.

    Article  PubMed  Google Scholar 

  209. Tanaka M, Tajima S, Mizuno K, Ishii A, Konishi Y, Miike T, Watanabe Y. Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. J Physiol Sci. 2015;65(6):483–98. https://doi.org/10.1007/s12576-015-0399-y. Epub 2015 Sept 29. Review. PMID: 26420687.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Van Cauwenbergh D, Nijs J, Kos D, Van Weijnen L, Struyf F, Meeus M. Malfunctioning of the autonomic nervous system in patients with chronic fatigue syndrome: a systematic literature review. Eur J Clin Investig. 2014;44(5):516–26. https://doi.org/10.1111/eci.12256.

    Article  Google Scholar 

  211. Lewis I, Pairman J, Spickett G, Newton JL. Clinical characteristics of a novel subgroup of chronic fatigue syndrome patients with postural orthostatic tachycardia syndrome. J Intern Med. 2013;273(5):501–10. https://doi.org/10.1111/joim.12022. Epub 2013 Jan 7. PMID: 23206180.

    Article  CAS  PubMed  Google Scholar 

  212. Myhill S, Booth NE, McLaren-Howard J. Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit. Int J Clin Exp Med. 2013;6(1):1–15. Epub 2012 Nov 20. PMID: 23236553.

    PubMed  Google Scholar 

  213. Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208–20. Epub 2012 Jun 15. PMID: 22837795.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Myhill S, Booth NE, McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med. 2009;2(1):1–16. Epub 2009 Jan 15. PMID: 19436827.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. World Health Association International Statistics Classification Disease and Related Health Problems, 10th revision, ICD-10, 2010, cited 2014, available from http/APPS.WHO.International Classifications, ICD-10, Brown, 2010, G90–G99. https://icd.who.int/browse10/2014/en#/

  216. Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med. 2013;11:205. https://doi.org/10.1186/1741-7015-11-205. Review. PMID: 24229326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Agarwal AK, Garg R, Ritch A, Sarkar P. Postural orthostatic tachycardia syndrome. Postgrad Med J. 2007;83(981):478–80. Review. PMID: 17621618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tomas C, Newton J, Watson S. A review of hypothalamic-pituitary-adrenal axis function in chronic fatigue syndrome. ISRN Neurosci. 2013;2013:784520. https://doi.org/10.1155/2013/784520. eCollection 2013. PMID: 24959566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Jason L, Sorenson M, Sebally K, Alkazemi D, Lerch A, Porter N, Kubow S. Increased HDAC in association with decreased plasma cortisol in older adults with chronic fatigue syndrome. Brain Behav Immun. 2011;25(8):1544–7. https://doi.org/10.1016/j.bbi.2011.04.007. Epub 2011 Apr 28. PMID: 21549189.

    Article  CAS  PubMed  Google Scholar 

  220. Crofford LJ, Young EA, Engleberg NC, Korszun A, Brucksch CB, McClure LA, Brown MB, Demitrack MA. Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav Immun. 2004;18(4):314–25.

    Article  CAS  PubMed  Google Scholar 

  221. Cairns R, Hotopf M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup Med (Lond). 2005;55(1):20–31.

    Article  CAS  Google Scholar 

  222. Newton JL, Okonkwo O, Sutcliffe K, Seth A, Shin J, Jones DE. Symptoms of autonomic dysfunction in chronic fatigue syndrome. QJM. 2007;100(8):519–26. Epub 2007 Jul 7.

    Article  CAS  PubMed  Google Scholar 

  223. Costigan A, Elliott C, McDonald C, Newton JL. Orthostatic symptoms predict functional capacity in chronic fatigue syndrome: implications for management. QJM. 2010;103(8):589–95. https://doi.org/10.1093/qjmed/hcq094. Epub 2010 Jun 9.

    Article  CAS  PubMed  Google Scholar 

  224. Woltjer HH, Bogaard HJ, de Vries PM. The technique of impedance cardiography. Eur Heart J. 1997;18(9):1396–403.

    Article  CAS  PubMed  Google Scholar 

  225. Jones DE, Gray J, Frith J, Newton JL. Fatigue severity remains stable over time and independently associated with orthostatic symptoms in chronic fatigue syndrome: a longitudinal study. J Intern Med. 2011;269(2):182–8. https://doi.org/10.1111/j.1365-2796.2010.02306.x. Epub 2010 Nov 14. PMID: 21073560.

    Article  CAS  PubMed  Google Scholar 

  226. Hollingsworth KG, Jones DE, Taylor R, Blamire AM, Newton JL. Impaired cardiovascular response to standing in chronic fatigue syndrome. Eur J Clin Investig. 2010;40(7):608–15. https://doi.org/10.1111/j.1365-2362.2010.02310.x. Epub 2010 May 23. PMID: 20497461.

    Article  Google Scholar 

  227. Okamoto LE, Raj SR, Peltier A, Gamboa A, Shibao C, Diedrich A, Black BK, Robertson D, Biaggioni I. Neurohumoral and haemodynamic profile in postural tachycardia and chronic fatigue syndromes. Clin Sci (Lond). 2012;122(4):183–92. https://doi.org/10.1042/CS20110200. PMID: 21906029.

    Article  Google Scholar 

  228. Naschitz J, Dreyfuss D, Yeshurun D, Rosner I. Midodrine treatment for chronic fatigue syndrome. Postgrad Med J. 2004;80(942):230–2. PMID: 15082846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Naschitz JE, Rosner I, Rozenbaum M, Naschitz S, Musafia-Priselac R, Shaviv N, Fields M, Isseroff H, Zuckerman E, Yeshurun D, Sabo E. The head-up tilt test with haemodynamic instability score in diagnosing chronic fatigue syndrome. QJM. 2003;96(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  230. DuBois RE. Gamma globulin therapy for chronic mononucleosis syndrome. AIDS Res. 1986;2(Suppl 1):S191–5. PMID: 2435296.

    PubMed  Google Scholar 

  231. Fluge Ø, Risa K, Lunde S, Alme K, Rekeland IG, Sapkota D, Kristoffersen EK, Sørland K, Bruland O, Dahl O, Mella O. B-lymphocyte depletion in myalgic encephalopathy/chronic fatigue syndrome. An open-label phase ii study with rituximab maintenance treatment. PLoS One. 2015;10(7):e0129898. https://doi.org/10.1371/journal.pone.0129898. eCollection 2015. PMID: 26132314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fluge Ø, Bruland O, Risa K, Storstein A, Kristoffersen EK, Sapkota D, Næss H, Dahl O, Nyland H, Mella O. Benefit from B-lymphocyte depletion using the anti-CD20 antibody rituximab in chronic fatigue syndrome. A double-blind and placebo-controlled study. PLoS One. 2011;6(10):e26358. https://doi.org/10.1371/journal.pone.0026358. Epub 2011 Oct 19. PMID: 22039471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Papadopoulos A, Ebrecht M, Roberts AD, Poon L, Rohleder N, Cleare AJ. Glucocorticoid receptor mediated negative feedback in chronic fatigue syndrome using the low dose (0.5 mg) dexamethasone suppression test. J Affect Disord. 2009;112(1–3):289–94. https://doi.org/10.1016/j.jad.2008.05.001. Epub 2008 Jun 24. PMID: 18573538.

    Article  CAS  PubMed  Google Scholar 

  234. Filler K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, Saligan LN. Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clin. 2014;1:12–23.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Gerdle B, Forsgren MF, Bengtsson A, Leinhard OD, Sören B, Karlsson A, Brandejsky V, Lund E, Lundberg P. Decreased muscle concentrations of ATP and PCR in the quadriceps muscle of fibromyalgia patients – a 31P-MRS study. Eur J Pain. 2013;17(8):1205–15. https://doi.org/10.1002/j.1532-2149.2013.00284.x. Epub 2013 Jan 30.

    Article  CAS  PubMed  Google Scholar 

  236. Castro-Marrero J, Cordero MD, Sáez-Francas N, Jimenez-Gutierrez C, Aguilar-Montilla FJ, Aliste L, Alegre-Martin J. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid Redox Signal. 2013;19(15):1855–60. https://doi.org/10.1089/ars.2013.5346. Epub 2013 May 29.

    Article  CAS  PubMed  Google Scholar 

  237. Singh B, Singh R. Mitochondrial dysfunction and chronic fatigue syndromes: issues in clinical care. IOSR-JDMS. 2014;13(5):30–3. e-ISSN: 2279-0853, p-ISSN: 2279-0861.

    Article  Google Scholar 

  238. Sarzi-Puttini P, Atzeni F, Mease PJ. Chronic widespread pain: from peripheral to central evolution. Best Pract Res Clin Rheumatol. 2011;25(2):133–9. https://doi.org/10.1016/j.berh.2011.04.001.

    Article  PubMed  Google Scholar 

  239. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e 28–292.

    Google Scholar 

  241. Shah SJ, Kitzman DW, Borlaug BA, et al. Phenotype – specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2006;134:73–90.

    Article  Google Scholar 

  242. Zhang Y, Guallar E, Ashar FN, Longchamps RJ, Castellani CA, Lane J, Grove ML, Coresh J, Sotoodehnia N, Ilkhanoff L, Boerwinkle E, Pankratz N, Arking DE. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur Heart J. 2017. https://doi.org/10.1093/eurheartj/ehx354. [Epub ahead of print].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose cotransporter. JACC Heart Fail. 2018;6(8):633–9.

    Article  PubMed  Google Scholar 

  244. Adabag AS, Luepker RV, Roger VL, Gersh BJ. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol. 2010;7(4):216–25. https://doi.org/10.1038/nrcardio.2010.3.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Haykowsky MJ, et al. Regional adipose distribution and its relation to excess intolerance in older obese patients who has heart failure with preserved ejection fraction. JACC Heart Fail. 2018;6(9):642–9.

    Google Scholar 

  246. Bharadwaj MS, et al. Relationship between mitochondrial content and bioenergetics with obesity, body composition and fat distribution to healthy older adults. BMC Obes. 2015;2:40.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Forman DE, Goodpasture BH. Weighty matters in HFpEF and aging. JACC Heart Fail. 2018;6(8):650–2.

    Article  PubMed  Google Scholar 

  248. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial dysfunction. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  249. Schmidt-Wilcke T, Clauw DJ. Fibromyalgia: from pathophysiology to therapy. Nat Rev Rheumatol. 2011;7(9):518–27. https://doi.org/10.1038/nrrheum.2011.98.

    Article  PubMed  Google Scholar 

  250. Fatima G, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters and metal ion content in patients with fibromyalgia syndrome: implications in the pathogenesis of the disease. Clin Exp Rheumatol. 2013;31(6 Suppl 79):S128–33. Epub 2013 Dec 16.

    PubMed  Google Scholar 

  251. Ohnishi H, Saito Y. Eicosapentaenoic acid (EPA) reduces cardiovascular events: relationship with the EPA/arachidonic acid ratio. J Atheroscler Thromb. 2013;20(12):861–77. Epub 2013 Sept 18. Review.

    Article  CAS  PubMed  Google Scholar 

  252. El-Sawya N, El-Tantawia G, Achmawib GAH, Sultana H, Younisa S. Autonomic changes in fibromyalgia: clinical and electrophysiological study. Alexandria J Med. 2012;48(3):215–22.

    Article  Google Scholar 

  253. Solano C, Martinez A, Becerril L, Vargas A, Figueroa J, Navarro C, Ramos-Remus C, Martinez-Lavin M. Autonomic dysfunction in fibromyalgia assessed by the Composite Autonomic Symptoms Scale (COMPASS). J Clin Rheumatol. 2009;15(4):172–6. https://doi.org/10.1097/RHU.0b013e3181a1083d.

    Article  PubMed  Google Scholar 

  254. Kadetoff D, Kosek E. The effects of static muscular contraction on blood pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia. Eur J Pain. 2007;11(1):39–47. Epub 2006 Feb 9.

    Article  PubMed  Google Scholar 

  255. Ramírez M, Martínez-Martínez LA, Hernández-Quintela E, Velazco-Casapía J, Vargas A, Martínez-Lavín M. Small fiber neuropathy in women with fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. Semin Arthritis Rheum. 2015;45(2):214–9. https://doi.org/10.1016/j.semarthrit.2015.03.003. Epub 2015 Mar 19.

    Article  PubMed  Google Scholar 

  256. Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311(15):1547–55. https://doi.org/10.1001/jama.2014.3266.

    Article  CAS  PubMed  Google Scholar 

  257. Goldenberg DL, Burckhardt C, Crofford L. Management of fibromyalgia syndrome. JAMA. 2004;292(19):2388–95.

    Article  CAS  PubMed  Google Scholar 

  258. Dell’Osso L, Bazzichi L, Baroni S, Falaschi V, Conversano C, Carmassi C, Marazziti D. The inflammatory hypothesis of mood spectrum broadened to fibromyalgia and chronic fatigue syndrome. Clin Exp Rheumatol. 2015;33(1 Suppl 88):S109–16. Epub 2015 Mar 18.

    PubMed  Google Scholar 

  259. Giles TD, Materson BJ, Cohn JN, Kostis JB. Definition and classification of hypertension: an update. J Clin Hypertens (Greenwich). 2009;11(11):611–4. https://doi.org/10.1111/j.1751-7176.2009.00179.x. Erratum in: J Clin Hypertens (Greenwich). 2010 Jan;12(1):13.

    Article  Google Scholar 

  260. Lüscher TF, Mahfoud F. Renal nerve ablation after SYMPLICITY HTN-3: confused at the higher level? Eur Heart J. 2014;35(26):1706–11. https://doi.org/10.1093/eurheartj/ehu195. Epub 2014 May 14.

    Article  PubMed  PubMed Central  Google Scholar 

  261. DePace NL, Bateman JA, Yayac M, Oh J, Siddique M. Acosta C, Pinales JM, Vinik AI, Bloom HL. Improved patient outcomes by normalizing sympathovagal balance: differentiating syncope – precise subtype differentiation leads to improved outcomes. Cardiol Res Pract. 2018, Article ID 9532141, 8 pages. https://doi.org/10.1155/2018/953214.

  262. Murray GL, Colombo J. (R)alpha lipoic acid is a safe, effective pharmacologic therapy of chronic orthostatic hypotension associated with low sympathetic tone. Int J Angiol. 2019 (eFirst);1. https://doi.org/10.1055/s-0038-1676957.

  263. Mohammadi V, Dehghani S, Askari G. Does alpha-lipoic acid supplement regulate blood pressure? A systematic review of randomized, double-blind placebo-controlled clinical trials. Int J Prev Med. 2017;8:33–8.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Bangalore S, Messerlli F, Wun C, Zuckerman A, DeMicco D, Kostis J, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) trial. Eur Heart J. 2010;31(23):2897–908.

    Article  CAS  PubMed  Google Scholar 

  265. Queiroz T, Guimaraes D, Medndes-Junior L, Braga V. α-lipoic acid reduces hypertension and increases baroreflex sensitivity in renovascular hypertensive rats. Molecules. 2012;17(11):13357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Gouty S, Regalia J, Cai F, Helke C. Alpha-lipoic acid treatment prevents the diabetes-induced attenuation of the afferent limb of the baroreceptor reflex in rats. Auton Neurosci. 2003;108(1–2):32–44.

    Article  CAS  PubMed  Google Scholar 

  267. Wray D, Nishiyama S, Harris R, Zhao J, McDaniel J, Fjeldstad A, et al. Acute reversal of endothelial dysfunction in the elderly after antioxidant consumption. Hypertension. 2012;59(4):818–24.

    Article  CAS  PubMed  Google Scholar 

  268. Rahman S, Merchant N, Haque T, Wahi J, Bhaheetharan S, Ferdinand K, Khan B. The impact of lipoic acid on endothelial function and proteinuria in quinapril-treated diabetic patients with stage 1 hypertension: results from the QUALITY study. J Cardiovasc Pharmacol Ther. 2012;17(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  269. Xiang G, Pu J, Yue L, Hou J, Sun H. α-lipoic acid can improve endothelial dysfunction in subjects with impaired fasting glucose. Metabolism. 2011;60(4):480–5.

    Article  CAS  PubMed  Google Scholar 

  270. Tardif J, Rheaume E. Lipoic acid supplementation and endothelial function. Br J Pharmacol. 2008;153:1587–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Charles A. Advances in the basic and clinical science of migraine. Ann Neurol. 2009;65(5):491–8. https://doi.org/10.1002/ana.21691.

    Article  PubMed  Google Scholar 

  272. Leão AA. Spreading depression. Funct Neurol. 1986;1(4):363–6.

    PubMed  Google Scholar 

  273. Headache classification committee of the international headache society IHS, The international classification headache disorders. 3rd ed, beta version, Cephalgia. 2013;33: 629–808.

    Google Scholar 

  274. Yorns WR Jr, Hardison HH. Mitochondrial dysfunction in migraine. Semin Pediatr Neurol. 2013;20(3):188–93. https://doi.org/10.1016/j.spen.2013.09.002.

    Article  PubMed  Google Scholar 

  275. Stuart S, Griffiths LR. A possible role for mitochondrial dysfunction in migraine. Mol Gen Genomics. 2012;287(11–12):837–44. https://doi.org/10.1007/s00438-012-0723-7. Epub 2012 Oct 7.

    Article  CAS  Google Scholar 

  276. Millichap JG. Migraine and autonomic nervous system dysfunction. Pediatr Neurol Briefs. 2002;16(2):15–6.

    Google Scholar 

  277. Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16(1):76–87. https://doi.org/10.1016/S1474-4422(16)30293-9. Epub 2016 Nov 9.

    Article  CAS  PubMed  Google Scholar 

  278. Shechter A, Stewart WF, Silberstein SD, Lipton RB. Migraine and autonomic nervous system function: a population-based, case-control study. Neurology. 2002;58(3):422–7.

    Article  PubMed  Google Scholar 

  279. Millichap JG, Yee MM. The diet factor in pediatric and adolescent migraine. Pediatr Neurol. 2003;28(1):9–15.

    Article  PubMed  Google Scholar 

  280. Charles A. Migraine. N Engl J Med. 2017;377(17):1698–9. https://doi.org/10.1056/NEJMc1711803.

    Article  PubMed  Google Scholar 

  281. Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, Lipton RB. Global prevalence of chronic migraine: a systematic review. Cephalalgia. 2010;30(5):599–609. https://doi.org/10.1111/j.1468-2982.2009.01941.x.

    Article  CAS  PubMed  Google Scholar 

  282. Minen MT, Begasse De Dhaem O, Kroon Van Diest A, Powers S, Schwedt TJ, Lipton R, Silbersweig D. Migraine and its psychiatric comorbidities. J Neurol Neurosurg Psychiatry. 2016;87(7):741–9. https://doi.org/10.1136/jnnp-2015-312233. Epub 2016 Jan 5.

    Article  PubMed  Google Scholar 

  283. Bigal ME, Lipton RB. Excessive acute migraine medication use and migraine progression. Neurology. 2008;71(22):1821–8. https://doi.org/10.1212/01.wnl.0000335946.53860.1d.

    Article  CAS  PubMed  Google Scholar 

  284. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92. Epub 2007 Jan 18.

    Article  CAS  PubMed  Google Scholar 

  285. Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27(5):394–402. Epub 2007 Mar 30.

    Article  CAS  PubMed  Google Scholar 

  286. Elmenshawy E, Sakr S. Autonomic dysfunction in migraine; what do we need to know? Egypt J Neurol Psychiatr Neurosur. 2009;46:489–96.

    Google Scholar 

  287. Gaul C, Diener HC, Danesch U, Migravent® Study Group. Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: a randomized, placebo-controlled, double-blind, multicenter trial. J Headache Pain. 2015;16:516. https://doi.org/10.1186/s10194-015-0516-6. Epub 2015 Apr 3.

    Article  CAS  PubMed  Google Scholar 

  288. Reeve AK, Simcox EM, Duchen MR, Turnbull DM, editors. Mitochondrial dysfunction in neurodegenerative disorders. 2nd ed. Cham: Springer International Publishing; 2016.

    Google Scholar 

  289. Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease Front Synaptic Neurosci. 2010. https://doi.org/10.3389/fnsyn.2010.00139

  290. Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol. 2009;554:165–81. https://doi.org/10.1007/978-1-59745-521-3_11.

    Article  CAS  PubMed  Google Scholar 

  291. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

    Article  CAS  PubMed  Google Scholar 

  292. Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26(6):771–90. https://doi.org/10.1016/j.beem.2012.05.002. Epub 2012 Jun 16.

    Article  CAS  PubMed  Google Scholar 

  293. Glancy B, Balaban RS. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry. 2012;51(14):2959–73. https://doi.org/10.1021/bi2018909. Epub 2012 Mar 29.

    Article  CAS  PubMed  Google Scholar 

  294. Chrysostomou A, Turnbull DM. Mitochondria, the synapse, and neurodegeneration. In: Reeve A, Simcox E, Duchen M, Turnbull D, editors. Mitochondrial dysfunction in neurodegenerative disorders. https://doi.org/10.1007/978-3-319-28637-2_9.

    Chapter  Google Scholar 

  295. Marland JRK, Hasel P, Bonnycastle K, Cousin MA. Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals. J Biol Chem. 2016;291(5):2080–6. https://doi.org/10.1074/jbc.M115.686956.

    Article  CAS  PubMed  Google Scholar 

  296. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012;13(9):566–78. https://doi.org/10.1038/nrm3412. Epub 2012 Aug 1.

    Article  CAS  PubMed  Google Scholar 

  297. Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24(12):761–70. https://doi.org/10.1016/j.tcb.2014.08.005. Epub 2014 Sept 2.

    Article  CAS  PubMed  Google Scholar 

  298. Ahuja M, Muallem S. The gatekeepers of mitochondrial calcium influx: MICU1 and MICU2. EMBO Rep. 2014;15(3):205–6. https://doi.org/10.1002/embr.201438446. Epub 2014 Feb 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22. Epub 2006 Nov 16.

    Article  CAS  PubMed  Google Scholar 

  300. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42. Epub 2006 Nov 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Shalev A, Liberzon I, Marmar C. Post traumatic stress disorder. (Longo DL, ed) NEJM. 2017;376:2459–69. https://doi.org/10.1056/NEJMra1612499.

    Article  PubMed  Google Scholar 

  302. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC; 2000.

    Google Scholar 

  303. Brudey C, Park J, Wiaderkiewicz J, Kobayashi I, Mellman TA, Marvar PJ. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease. Am J Physiol Regul Integr Comp Physiol. 2015;309:R315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun. 2007;21:736–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Kanel von R, Hepp U, Kraemer B, Traber R, Keel M, Mica L, Schnyder U. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J Psychiatr Res. 2007;41:744–52.

    Article  Google Scholar 

  306. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9.

    Article  PubMed  Google Scholar 

  307. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30:297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Song C, Phillips AG, Leonard B. Interleukin 1β enhances conditioned fear memory in rats: possible involvement of glucocorticoids. Eur J Neurosci. 2003;18:1739–43.

    Article  PubMed  Google Scholar 

  309. Wohleb ES, Patterson JM, Sharma V, Quan N, Godbout JP, Sheridan JF. Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior. J Neurosci. 2014;34:2583–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Oosthuizen F, Wegener G, Harvey BH. Nitric oxide as inflammatory mediator in post-traumatic stress disorder (PTSD): evidence from an animal model. Neuropsychiatr Dis Treat. 2005;1:109–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. de Lange T. Protection of mammalian telomeres. Oncogene. 2002;21:532–40.

    Article  PubMed  Google Scholar 

  312. Roake CM, Artandi SE. Control of cellular aging, tissue function, and cancer by p53 downstream of telomeres. Cold Spring Harb Perspect Med. 2017;7(5):a026088. https://doi.org/10.1101/cshperspect.a026088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Vera E, Blasco MA. Beyond average: potential for measurement of short telomeres. Aging (Albany NY). 2012;4(6):379–92.

    Article  CAS  PubMed Central  Google Scholar 

  314. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    Article  CAS  PubMed  Google Scholar 

  315. Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.

    Article  CAS  PubMed  Google Scholar 

  316. Collins K, Mitchell JR. Telomerase in the human organism. Oncogene. 2002;21:564–79.

    Article  CAS  PubMed  Google Scholar 

  317. Canela A, Vera E, Klatt P, Blasco MA. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104:5300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 2008;22:654–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Yui J, Chiu CP, Lansdorp PM. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood. 1998;91:3255–62.

    CAS  PubMed  Google Scholar 

  320. Deng Y, Chan SS, Chang S. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer. 2008;8:450–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–33.

    Article  CAS  PubMed  Google Scholar 

  322. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3:640–9.

    Article  CAS  PubMed  Google Scholar 

  323. de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157(7):1515–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Aviv A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res. 2012;730:68–74.

    Article  CAS  PubMed  Google Scholar 

  325. Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang SJ, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD, Gardner JP, Srinivasan SR, Schork N, Rotter JI, Herbig U, Psaty BM, Sastrasinh M, Murray SS, Vasan RS, Province MA, Glazer NL, Lu X, Cao X, Kronmal R, Mangino M, Soranzo N, Spector TD, Berenson GS, Aviv A. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci U S A. 2010;107:9293–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Mangino M, Hwang SJ, Spector TD, Hunt SC, Kimura M, Fitzpatrick AL, Christiansen L, Petersen I, Elbers CC, Harris T, Chen W, Srinivasan SR, Kark JD, Benetos A, El Shamieh S, Visvikis-Siest S, Christensen K, Berenson GS, Valdes AM, Viñuela A, Garcia M, Arnett DK, Broeckel U, Province MA, Pankow JS, Kammerer C, Liu Y, Nalls M, Tishkoff S, Thomas F, Ziv E, Psaty BM, Bis JC, Rotter JI, Taylor KD, Smith E, Schork NJ, Levy D, Aviv A. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol Genet. 2012;21:5385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13:693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Guarante L. The Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011;364:2235–44.

    Article  Google Scholar 

  330. Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res. 2013;97:571–9.

    Article  CAS  PubMed  Google Scholar 

  331. Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59.

    Article  CAS  PubMed  Google Scholar 

  332. Tzanetakou IP, Nzietchueng R, Perrea DN, Benetos A. Telomeres and their role in aging and longevity. Curr Vasc Pharmacol. 2014;12:726–34.

    Article  CAS  PubMed  Google Scholar 

  333. Kovacic JC, Moreno P, Nabel EG, Hachinski V, Fuster V. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review. Circulation. 2011;123:1990–2010.

    Google Scholar 

  334. Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10:274–83.

    Article  CAS  PubMed  Google Scholar 

  335. Nilsson PM, Tufvesson H, Leosdottir M, Melander O. Telomeres and cardiovascular disease risk: an update 2013. Transl Res. 2013;162:371–80.

    Article  CAS  PubMed  Google Scholar 

  336. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19:2001–10.

    Article  CAS  Google Scholar 

  337. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12:1133–8.

    Article  CAS  PubMed  Google Scholar 

  338. Campisi J. Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev. 2011;21:107–12.

    Article  CAS  PubMed  Google Scholar 

  339. von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126:111–7.

    Article  CAS  Google Scholar 

  340. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27:339–44.

    Article  Google Scholar 

  341. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.

    Article  PubMed  CAS  Google Scholar 

  342. Correia-Melo C, Hewitt G, Passos JF. Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence? Longev Healthspan. 2014;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  343. Erusalimsky JD, Kurz DJ. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol. 2005;40:634–42.

    Article  CAS  PubMed  Google Scholar 

  344. Savage SA, Stewart BJ, Eckert A, Kiley M, Liao JS, Channock SJ. Genetic variation, nucleotide diversity, and linkage disequilibrium in seven telomere stability genes suggest that these genes may be under constraint. Hum Mutat. 2005;26:343–50.

    Article  CAS  PubMed  Google Scholar 

  345. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22.

    Article  CAS  PubMed  Google Scholar 

  346. Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35:155–9.

    Article  CAS  PubMed  Google Scholar 

  347. de Jesus BB, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 2011;10:604–21.

    Article  CAS  Google Scholar 

  348. Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M. Estrogen activates telomerase. Cancer Res. 1999;59:5917–21.

    CAS  PubMed  Google Scholar 

  349. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–720.

    Article  CAS  PubMed  Google Scholar 

  350. Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66:815–20.

    Article  PubMed  CAS  Google Scholar 

  351. Gellert C, Schöttker B, Brenner H. Smoking and all-cause mortality in older people: systematic review and meta-analysis. Arch Intern Med. 2012;172:837–44.

    Article  PubMed  Google Scholar 

  352. Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27:815–22.

    Article  PubMed  Google Scholar 

  353. Müezzinler A, Zaineddin AK, Brenner H. Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev. 2014;15:192–201.

    Article  PubMed  Google Scholar 

  354. Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89:122–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD, Aviv A. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168:154–8.

    Article  PubMed  Google Scholar 

  356. Njajou OT, Hsueh WC, Blackburn EH, Newman AB, Wu SH, Li R, Simonsick EM, Harris TM, Cummings SR, Cawthon RM. Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci. 2009;64(8):860–4.

    Article  PubMed  CAS  Google Scholar 

  357. Kennedy BK, et al. Geroscience; linking aging to chronic disease. Cell. 2014;159:709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101:17312–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, Epel ES. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013;38:1835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Krauss J, Farzaneh-Far R, Puterman E, Na B, Lin J, Epel E, Blackburn E, Whooley MA. Physical fitness and telomere length in patients with coronary heart disease: findings from the heart and soul study. PLoS One. 2011;6:e26983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Ornish D, Lin J, Daubenmier J, Weidner G, Epel E, Kemp C, Magbanua MJ, Marlin R, Yglecias L, Carroll PR, Blackburn EH. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9:1048–57.

    Article  CAS  PubMed  Google Scholar 

  362. Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell. 2014;14:391–400.

    Article  CAS  Google Scholar 

  363. Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G, Marlin R, Frenda SJ, Magbanua MJ, Daubenmier J, Estay I, Hills NK, Chainani-Wu N, Carroll PR, Blackburn EH. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14:1112–20.

    Article  CAS  PubMed  Google Scholar 

  364. Rizzuto D, Fratiglioni L. Life style factors related to mortality and survival: a mini-review. Gerontology. 2014;60:327–35.

    Article  CAS  PubMed  Google Scholar 

  365. Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, Scharhag J, Büchner N, Meyer T, Kindermann W, Haendeler J, Böhm M, Laufs U. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120:2438–47.

    Article  PubMed  Google Scholar 

  366. Richards BJ, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A. Higher vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr. 2007;86:1420–5.

    Article  CAS  PubMed  Google Scholar 

  367. Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89:1857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, Schmidt R, Launer LJ, Schmidt H. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc. 2014;62(2):222–9.

    Article  PubMed  Google Scholar 

  369. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303:250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Paul L. Diet, nutrition and telomere length. J Nutr Biochem. 2011;20:895–901.

    Article  CAS  Google Scholar 

  371. Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Polisso G. Mediterranean diet, telomere maintenance and health status among elderly. PLoS One. 2013;8:1–6.

    Article  CAS  Google Scholar 

  372. Crous-Bou M, Fung TF, Prescott J, Julin B, Du M, Sun Q, Rexrode KM, Hu FB, De Vivo I. Mediterranean diet and telomere length in Nurses’ health study: population based cohort study. BMJ. 2014;349:6674.

    Article  CAS  Google Scholar 

  373. Saliques S, Teyssier J-R, Vergely C, Lorgis L, Lorin J. Circulating leukocyte telomere length and oxidative stress: a new target for statin therapy. Atherosclerosis. 2011;219:753–60.

    Article  CAS  PubMed  Google Scholar 

  374. Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64 637 individuals from the general population. J Natl Cancer Inst. 2015;107(6):107.

    Article  CAS  Google Scholar 

  375. Guarante L. The Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011;364:2235–44.

    Article  Google Scholar 

  376. Armanios M, Alder JK, Parry EM, Karim B, Strong MA, Greider CW. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet. 2009;85(6):823–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Shimamoto A, Koutaro Y, Tahara H. Werner-syndrome-specific induced pluripotent stem cells: recovery of telomere function by reprogramming. Front Genet. 2015.

    Google Scholar 

  378. Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000 Research. 2016;5:F1000 Faculty Rev-89. https://doi.org/10.12688/f1000research.7020.1.

    Article  Google Scholar 

  379. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–33. https://doi.org/10.1016/j.cell.2007.07.003.

    Article  CAS  PubMed  Google Scholar 

  381. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96. https://doi.org/10.1038/nrm3823.

    Article  CAS  PubMed  Google Scholar 

  382. Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005;309(5738):1253–6. https://doi.org/10.1126/science.1115025.

    Article  PubMed  Google Scholar 

  383. Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol. 2007;8(9):703–13. https://doi.org/10.1038/nrm2241.

    Article  CAS  PubMed  Google Scholar 

  384. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361(24):2353–65. https://doi.org/10.1056/NEJMra0903373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13(10):693–704. https://doi.org/10.1038/nrg3246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Holohan B, Wright WE, Shay JW. Cell biology of disease: telomeropathies: an emerging spectrum disorder. J Cell Biol. 2014;205(3):289–99. https://doi.org/10.1083/jcb.201401012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Townsley DM, Dumitriu B, Young NS. Bone marrow failure and the telomeropathies. Blood. 2014;124(18):2775–83. https://doi.org/10.1182/blood-2014-05-526285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11(5):1921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97(4):527–38. https://doi.org/10.1016/S0092-8674(00)80762-X.

    Article  CAS  PubMed  Google Scholar 

  390. Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65. https://doi.org/10.1038/nature09787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  392. Canela A, Klatt P, Blasco MA. Telomere length analysis. Methods Mol Biol. 2007;371:45–72. https://doi.org/10.1007/978-1-59745-361-5_5.

    Article  CAS  PubMed  Google Scholar 

  393. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44. https://doi.org/10.1016/S0968-0004(02)02110-2.

    Article  Google Scholar 

  394. Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4. https://doi.org/10.1016/S0140-6736(05)66630-5.

    Article  CAS  PubMed  Google Scholar 

  395. Strandberg TE, Saijonmaa O, Tilvis RS, et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J Gerontol A Biol Sci Med Sci. 2011;66(7):815–20. https://doi.org/10.1093/gerona/glr064.

    Article  CAS  PubMed  Google Scholar 

  396. Verde Z, Reinoso-Barbero L, Chicharro L, et al. Effects of cigarette smoking and nicotine metabolite ratio on leukocyte telomere length. Environ Res. 2015;140:488–94. https://doi.org/10.1016/j.envres.2015.05.008.

    Article  CAS  PubMed  Google Scholar 

  397. Révész D, Milaneschi Y, Verhoeven JE, et al. Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab. 2015;100(8):3050–9. https://doi.org/10.1210/JC.2015-1995.

    Article  CAS  PubMed  Google Scholar 

  398. Strandberg TE, Strandberg AY, Saijonmaa O, et al. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27(10):815–22. https://doi.org/10.1007/s10654-012-9728-0.

    Article  PubMed  Google Scholar 

  399. Müezzinler A, Mons U, Dieffenbach AK, et al. Smoking habits and leukocyte telomere length dynamics among older adults: results from the ESTHER cohort. Exp Gerontol. 2015;70:18–25. https://doi.org/10.1016/j.exger.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  400. Wolkowitz OM, Mellon SH, Epel ES, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress – preliminary findings. PLoS One. 2011;6(3):e17837. https://doi.org/10.1371/journal.pone.0017837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Karabatsiakis A, Kolassa IT, Kolassa S, et al. Telomere shortening in leukocyte subpopulations in depression. BMC Psychiatry. 2014;14:192. https://doi.org/10.1186/1471-244X-14-192.

    Article  PubMed  PubMed Central  Google Scholar 

  402. O’Donovan A, Epel E, Lin J, et al. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biol Psychiatry. 2011;70(5):465–71. https://doi.org/10.1016/j.biopsych.2011.01.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Lin J, Epel E, Blackburn E. Telomeres and lifestyle factors: roles in cellular aging. Mutat Res. 2012;730(1–2):85–9. https://doi.org/10.1016/j.mrfmmm.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  404. Kinser PA, Lyon DE. Major depressive disorder and measures of cellular aging: an integrative review. Nurs Res Pract. 2013;2013:469070. https://doi.org/10.1155/2013/469070.

    Article  PubMed  PubMed Central  Google Scholar 

  405. Lindqvist D, Epel ES, Mellon SH, et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev. 2015;55:333–64. https://doi.org/10.1016/j.neubiorev.2015.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Simon NM, Smoller JW, McNamara KL, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 2006;60(5):432–5. https://doi.org/10.1016/j.biopsych.2006.02.004.

    Article  CAS  PubMed  Google Scholar 

  407. Elvsåshagen T, Vera E, Bøen E, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord. 2011;135(1–3):43–50. https://doi.org/10.1016/j.jad.2011.08.006.

    Article  PubMed  Google Scholar 

  408. Canela A, Vera E, Klatt P, et al. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104(13):5300–5. https://doi.org/10.1073/pnas.0609367104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. De Jesus BB, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet. 2013;29(9):513–20. https://doi.org/10.1016/j.tig.2013.06.007.

    Article  CAS  PubMed Central  Google Scholar 

  410. Kovacic JC, Moreno P, Hachinski V, et al. Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation. 2011;123:1650–60.

    Article  PubMed  Google Scholar 

  411. Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31.

    Article  PubMed  PubMed Central  Google Scholar 

  412. D’Mello MJ, Ross SA, Briel M, et al. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015;8:82–90.

    Article  PubMed  CAS  Google Scholar 

  413. Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  414. Fernández-Alvira JM, Fuster V, Dorado B, Soberón N, Flores I, Gallardo M, Pocock S, Blasco MA, Andrés V. Short telomere load, telomere length, and subclinical atherosclerosis. J Am Coll Cardiol. 2016;67(21):2467–76. https://doi.org/10.1016/j.jacc.2016.03.530.

    Article  CAS  PubMed  Google Scholar 

  415. Rietzschel ER, Bekaert S, De Meyer T. Telomeres and atherosclerosis: the attrition of an attractive hypothesis. J Am Coll Cardiol. 2016;67(21):2477–9. https://doi.org/10.1016/j.jacc.2016.03.541.

    Article  PubMed  Google Scholar 

  416. Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  417. Bischoff C, Graakjaer J, Petersen HC, et al. The heritability of telomere length among the elderly and oldest-old. Twin Res Hum Genet. 2005;8(5):433–9. https://doi.org/10.1375/183242705774310141.

    Article  PubMed  Google Scholar 

  418. Andrew T, Aviv A, Falchi M, et al. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am J Hum Genet. 2006;78(3):480–6. https://doi.org/10.1086/500052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Broer L, Codd V, Nyholt DR, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8. https://doi.org/10.1038/ejhg.2012.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44. https://doi.org/10.1016/S0968-0004(02)02110-2.

    Article  Google Scholar 

  421. Farzaneh-Far R, Lin J, Epel ES, et al. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250–7. https://doi.org/10.1001/jama.2009.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Werner C, Fürster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47. https://doi.org/10.1161/CIRCULATIONAHA.109.861005.

    Article  PubMed  Google Scholar 

  423. Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15. https://doi.org/10.1111/j.1474-9726.2010.00583.x.

    Article  CAS  PubMed  Google Scholar 

  424. Soares-Miranda L, Imamura F, Siscovick D, et al. Physical activity, physical fitness, and leukocyte telomere length: the Cardiovascular Health Study. Med Sci Sports Exerc. 2015;47(12):2525–34. https://doi.org/10.1249/MSS.0000000000000720.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DePace, N.L., Colombo, J. (2019). Mind-Body Wellness Program Benefits. In: Clinical Autonomic and Mitochondrial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-17016-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17016-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17015-8

  • Online ISBN: 978-3-030-17016-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics