Skip to main content

Liquid Biopsy: Translating Minimally Invasive Disease Profiling from the Lab to the Clinic

  • Chapter
  • First Online:
Precision Cancer Medicine

Abstract

Precision medicine aims to characterize the unique molecular profile of individual tumors in order to predict clinical course and inform therapeutic decisions. The success of this approach is dependent on an adequate characterization of the disease at presentation, as well as over the course of treatment, as adaptations to therapy drive new mutations and resistance mechanisms. Tissue obtained through surgical excision or biopsy remains the mainstay of initial diagnosis and molecular analysis. However, tumor location and size, patient safety, and costs often limit the feasibility of repeated biopsies throughout the disease course. In addition, significant molecular heterogeneity between tumor sites and even within individual tumors can compromise comprehensive assessment of disease state from biopsy alone [1–4]. Liquid biopsies offer an alternative means of collecting representative and highly relevant information in a safe, easily repeatable, low cost manner in the form of a simple peripheral blood draw, enabling examination of various analytes including circulating tumor cells (CTCs), cell free DNA (cfDNA), cell free RNA (cfRNA), and extracellular vesicles with a widening array of potential clinical applications. Due to their easy accessibility, liquid biopsies enable monitoring of disease course in real time to gauge response to treatments, elucidate temporal evolution of genetic or cellular adaptations in response to therapies, and guide subsequent treatments. Hence, this approach may ultimately serve a pivotal role in translating precision medicine principles to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334

    Article  CAS  PubMed  Google Scholar 

  2. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C (2012) Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 4:127ps10

    Article  CAS  PubMed  Google Scholar 

  3. Bedard PL, Hansen AR, Ratain MJ, Siu LL (2013) Tumour heterogeneity in the clinic. Nature 501:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    CAS  PubMed  Google Scholar 

  6. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12:895–904

    Article  CAS  PubMed  Google Scholar 

  7. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  8. Shen M, Cancer M (2015) The complex seeds of metastasis. Nature 520:298–299

    Article  CAS  PubMed  Google Scholar 

  9. Allard WJ et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res Off J Am Assoc Cancer Res 10:6897–6904

    Article  Google Scholar 

  10. Aceto N et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Au SH et al (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci U S A 113:4947–4952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashworth T (1869) A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J 14:146–147

    Google Scholar 

  13. Ignatiadis M, Lee M, Jeffrey SS (2015) Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res Off J Am Assoc Cancer Res 21:4786–4800

    Article  CAS  Google Scholar 

  14. Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    Article  CAS  PubMed  Google Scholar 

  15. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  CAS  PubMed  Google Scholar 

  16. Mikolajczyk SD et al (2011) Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J Oncol 2011:252361

    Article  PubMed  PubMed Central  Google Scholar 

  17. Serrano MJ et al (2014) EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget 5:7486–7497

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu M et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ring A et al (2015) EpCAM based capture detects and recovers circulating tumor cells from all subtypes of breast cancer except claudin-low. Oncotarget 6:44623–44634

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pecot CV et al (2011) A novel platform for detection of CK+ and CK- CTCs. Cancer Discov 1:580–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anantharaman A et al (2016) Programmed death-ligand 1 (PD-L1) characterization of circulating tumor cells (CTCs) in muscle invasive and metastatic bladder cancer patients. BMC Cancer 16:744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alix-Panabières C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14:57–62

    Article  PubMed  Google Scholar 

  23. Cohen SJ et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 26:3213–3221

    Article  Google Scholar 

  24. Karabacak NM et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9:694–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta V et al (2012) ApoStream(™), a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 6:24133

    Article  PubMed  Google Scholar 

  26. The DEPArray system. Available at http://www.siliconbiosystems.com/deparray-system

  27. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10:374–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Bono JS et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 14:6302–6309

    Article  CAS  Google Scholar 

  29. Cristofanilli M et al (2005) Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 23:1420–1430

    Article  Google Scholar 

  30. Smerage JB, Hayes DF (2006) The measurement and therapeutic implications of circulating tumour cells in breast cancer. Br J Cancer 94:8–12

    Article  CAS  PubMed  Google Scholar 

  31. Wang J et al (2013) Prognostic significance of circulating tumor cells in non-small-cell lung cancer patients: a meta-analysis. PLoS One 8:e78070

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goldkorn A et al (2014) Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 32:1136–1142

    Article  CAS  Google Scholar 

  33. Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791

    Article  CAS  PubMed  Google Scholar 

  34. Lucci A et al (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13:688–695

    Article  PubMed  Google Scholar 

  35. Goldkorn A et al (2015) Circulating tumor cell telomerase activity as a prognostic marker for overall survival in SWOG 0421: a phase III metastatic castration resistant prostate cancer trial. Int J Cancer 136:1856–1862

    Article  CAS  PubMed  Google Scholar 

  36. Naito T et al (2012) Prognostic impact of circulating tumor cells in patients with small cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 7:512–519

    Google Scholar 

  37. Wallwiener M et al (2014) Serial enumeration of circulating tumor cells predicts treatment response and prognosis in metastatic breast cancer: a prospective study in 393 patients. BMC Cancer 14:512

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tsai W-S et al (2016) Circulating tumor cell count correlates with colorectal neoplasm progression and is a prognostic marker for distant metastasis in non-metastatic patients. Sci Rep 6:24517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bidard FC et al (2013) Circulating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial. Ann Oncol Off J Eur Soc Med Oncol ESMO 24:2057–2061

    Article  CAS  Google Scholar 

  40. Koyanagi K et al (2010) Serial monitoring of circulating tumor cells predicts outcome of induction biochemotherapy plus maintenance biotherapy for metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res 16:2402–2408

    Article  CAS  Google Scholar 

  41. Poveda A et al (2011) Circulating tumor cells predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer. Gynecol Oncol 122:567–572

    Article  PubMed  Google Scholar 

  42. Alva A et al (2015) Circulating tumor cells as potential biomarkers in bladder cancer. J Urol 194:790–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uenosono Y et al (2013) Clinical significance of circulating tumor cells in peripheral blood from patients with gastric cancer. Cancer 119:3984–3991

    Article  PubMed  Google Scholar 

  44. Smerage JB et al (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol Off J Am Soc Clin Oncol 32:3483–3489

    Article  CAS  Google Scholar 

  45. Singh D et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209

    Article  CAS  PubMed  Google Scholar 

  46. Lopez NE, Weiss AC, Robles J, Fanta P, Ramamoorthy SL (2016) A systematic review of clinically available gene expression profiling assays for stage II colorectal cancer: initial steps toward genetic staging. Am J Surg 212:700–714. https://doi.org/10.1016/j.amjsurg.2016.06.019

    Article  PubMed  Google Scholar 

  47. Subramanian J, Simon R (2010) Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst 102:464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Darshan MS et al (2011) Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 71:6019–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyamoto DT et al (2012) Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov 2:995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crespo M et al (2015) Androgen receptor expression in circulating tumour cells from castration-resistant prostate cancer patients treated with novel endocrine agents. Br J Cancer 112:1166–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Punnoose EA et al (2015) PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer 113:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Antonarakis ES et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scher HI et al (2016) Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2:1441–1449. https://doi.org/10.1001/jamaoncol.2016.1828

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kalinsky K et al (2015) Correlation of hormone receptor status between circulating tumor cells, primary tumor, and metastasis in breast cancer patients. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex 17:539–546

    CAS  Google Scholar 

  55. Babayan A et al (2013) Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. PLoS One 8:e75038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meng S et al (2004) HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 101:9393–9398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reijm EA et al (2016) An 8-gene mRNA expression profile in circulating tumor cells predicts response to aromatase inhibitors in metastatic breast cancer patients. BMC Cancer 16:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thomas A, Rajan A, Lopez-Chavez A, Wang Y, Giaccone G (2013) From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Ann Oncol Off J Eur Soc Med Oncol 24:577–585

    Article  CAS  Google Scholar 

  59. Maheswaran S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359:366–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abdallah EA et al (2015) Thymidylate synthase expression in circulating tumor cells: a new tool to predict 5-fluorouracil resistance in metastatic colorectal cancer patients. Int J Cancer 137:1397–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuhlmann JD et al (2014) ERCC1-positive circulating tumor cells in the blood of ovarian cancer patients as a predictive biomarker for platinum resistance. Clin Chem 60:1282–1289

    Article  CAS  PubMed  Google Scholar 

  62. Ni X et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U S A 110:21083–21088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Heitzer E et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73:2965–2975

    Article  CAS  PubMed  Google Scholar 

  64. Lyberopoulou A et al (2015) Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue. PLoS One 10:e0123902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lohr JG et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32:479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu M et al (2012) RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487:510–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gorges TM et al (2016) Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem 62:1504–1515

    Article  CAS  PubMed  Google Scholar 

  68. Miyamoto DT et al (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hodgkinson CL et al (2014) Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med 20:897–903

    Article  CAS  PubMed  Google Scholar 

  70. Kidess E, Jeffrey SS (2013) Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? Genome Med 5:70

    Article  PubMed  PubMed Central  Google Scholar 

  71. Alix-Panabières C, Pantel K (2016) Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6:479–491

    Article  CAS  PubMed  Google Scholar 

  72. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P (2001) About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta Int J Clin Chem 313:139–142

    Article  CAS  Google Scholar 

  73. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61:112–123

    Article  CAS  PubMed  Google Scholar 

  74. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids–a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581:795–799

    Article  CAS  PubMed  Google Scholar 

  75. Björkman L, Reich CF, Pisetsky DS (2003) The use of fluorometric assays to assess the immune response to DNA in murine systemic lupus erythematosus. Scand J Immunol 57:525–533

    Article  PubMed  Google Scholar 

  76. Chen Z et al (2009) Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS One 4:e7220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hindson BJ et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Forshew T et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4:136ra68

    Article  CAS  PubMed  Google Scholar 

  79. Higgins MJ et al (2012) Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res Off J Am Assoc Cancer Res 18:3462–3469

    Article  CAS  Google Scholar 

  80. Ignatiadis M, Dawson S-J (2014) Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann Oncol Off J Eur Soc Med Oncol 25:2304–2313

    Article  CAS  Google Scholar 

  81. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J (2016) Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ulz P et al (2016) Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat Genet 48:1273–1278

    Article  CAS  PubMed  Google Scholar 

  83. Dawson S-J et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–1209

    Article  CAS  PubMed  Google Scholar 

  84. Tie J et al (2015) Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol Off J Eur Soc Med Oncol 26:1715–1722

    Article  CAS  Google Scholar 

  85. Azad AA et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 21:2315–2324

    Article  CAS  Google Scholar 

  86. Rönnau CGH, Verhaegh GW, Luna-Velez MV, Schalken JA (2014) Noncoding RNAs as novel biomarkers in prostate cancer. Biomed Res Int 2014:591703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Olmos D et al (2012) Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol 13:1114–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ross RW et al (2012) A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: a prospective study. Lancet Oncol 13:1105–1113

    Article  CAS  PubMed  Google Scholar 

  89. Zander T et al (2011) Blood-based gene expression signatures in non-small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 17:3360–3367

    Article  CAS  Google Scholar 

  90. Cortez MA et al (2011) MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang H-L et al (2011) Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 71:326–331

    Article  CAS  PubMed  Google Scholar 

  92. Lin H-M et al (2014) Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer 110:2462–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Y et al (2013) Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 73:4801–4809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Press Release. Available at http://www.illumina.com/company/news-center/press-releases/press-release-details.html?newsid=2127903. Accessed 3 Jan 2017

  95. Swinkels DW, Wiegerinck E, Steegers EAP, de Kok JB (2003) Effects of blood-processing protocols on cell-free DNA quantification in plasma. Clin Chem 49:525–526

    Article  CAS  PubMed  Google Scholar 

  96. Qin Z, Ljubimov VA, Zhou C, Tong Y, Liang J (2016) Cell-free circulating tumor DNA in cancer. Chin J Cancer 35:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Devonshire AS et al (2014) Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem 406:6499–6512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ciardiello C et al (2016) Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci 17:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  CAS  PubMed  Google Scholar 

  100. D’Asti E, Chennakrishnaiah S, Lee TH, Rak J (2016) Extracellular vesicles in brain tumor progression. Cell Mol Neurobiol 36:383–407

    Article  CAS  PubMed  Google Scholar 

  101. Melo SA et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. O’Driscoll L (2015) Expanding on exosomes and ectosomes in cancer. N Engl J Med 372:2359–2362

    Article  CAS  PubMed  Google Scholar 

  103. Ma L (2016) MicroRNA and metastasis. Adv Cancer Res 132:165–207

    Article  CAS  PubMed  Google Scholar 

  104. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zomer A et al (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161:1046–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Costa-Silva B et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z (2007) Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res 67:7458–7466

    Article  CAS  PubMed  Google Scholar 

  108. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taylor DD, Gercel-Taylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33:441–454

    Article  CAS  PubMed  Google Scholar 

  110. Giallombardo M, Taverna S, Alessandro R, Hong D, Rolfo C (2016) Exosome-mediated drug resistance in cancer: the near future is here. Ther Adv Med Oncol 8:320–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rolfo C et al (2014) Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta 1846:539–546

    CAS  PubMed  Google Scholar 

  112. Lobb RJ et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracellular Vesicles 4:27031

    Article  Google Scholar 

  113. Lötvall J et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracellular Vesicles 3:26913

    Article  Google Scholar 

  114. Hannafon BN et al (2016) Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res BCR 18:90

    Article  CAS  PubMed  Google Scholar 

  115. Huang X et al (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67:33–41

    Article  CAS  PubMed  Google Scholar 

  116. Matsumoto Y et al (2016) Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 36:2535–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pfeffer SR et al (2015) Detection of exosomal miRNAs in the plasma of melanoma patients. J Clin Med 4:2012–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46

    Article  CAS  PubMed  Google Scholar 

  120. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21

    Article  CAS  PubMed  Google Scholar 

  121. Ogata-Kawata H et al (2014) Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9:e92921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Del Re M et al (2016) The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 71:680–687. https://doi.org/10.1016/j.eururo.2016.08.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Goldkorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zainfeld, D., Ghani, U., Kang, I., Goldkorn, A. (2019). Liquid Biopsy: Translating Minimally Invasive Disease Profiling from the Lab to the Clinic. In: Roychowdhury, S., Van Allen, E. (eds) Precision Cancer Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-23637-3_10

Download citation

Publish with us

Policies and ethics