Skip to main content

Predisposing Factors for Exertional Heat Illness

  • Chapter
  • First Online:
Exertional Heat Illness

Abstract

Exertional heat illnesses constitute an array of medical conditions comprising mild (heat syncope, heat rashes, exercise-associated muscle cramping, and heat exhaustion) to life-threatening disorders (exertional heat stroke). It is imperative that individuals, practitioners, and policymakers are well informed about the risk of and predisposing factors to exertional heat illnesses. Primary among these risk factors is heat stress which is the result of the combined effects of protective equipment or clothing, metabolic rate, and environmental conditions. Heat stress is a known hazard to both physical performance and health (e.g., exertional heat illness risk). Modifiable and non-modifiable risk factors are discussed as well as preventative strategies to mitigate the influence of heat stress and exertional heat illness risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rav-Acha M, Hadad E, Epstein Y, Heled Y, Moran DS. Fatal exertional heat stroke: a case series. Am J Med Sci. 2004;328(2):84–7.

    Article  PubMed  Google Scholar 

  2. Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, et al. The effects of continuous hot weather training on risk of exertional heat illness. Med Sci Sports Exerc. 2005;37(1):84–90.

    Article  PubMed  Google Scholar 

  3. Kerr ZY, Casa DJ, Marshall SW, Comstock RD. Epidemiology of exertional heat illness among U.S. high school athletes. Am J Prev Med. 2013;44(1):8–14.

    Article  PubMed  Google Scholar 

  4. Grundstein AJ, Ramseyer C, Zhao F, Pesses JL, Akers P, Qureshi A, et al. A retrospective analysis of American football hyperthermia deaths in the United States. Int J Biometeorol. 2012;56(1):11–20.

    Article  PubMed  Google Scholar 

  5. Tripp BL, Eberman LE, Smith MS. Exertional heat illnesses and environmental conditions during high school football practices. Am J Sports Med. 2015;43(10):2490–5.

    Article  PubMed  Google Scholar 

  6. Yeargin SW, Kerr ZY, Casa DJ, Djoko A, Hayden R, Parsons JT, et al. Epidemiology of exertional heat illnesses in youth, high school, and college football. Med Sci Sports Exerc. 2016;48(8):1523–9.

    Article  PubMed  Google Scholar 

  7. Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–47.

    Article  PubMed  Google Scholar 

  8. Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;59(9):986–1000.

    Article  Google Scholar 

  9. Racinais S, Alonso JM, Coutts AJ, Flouris AD, Girard O, Gonzalez-Alonso J, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):6–19.

    Article  PubMed  Google Scholar 

  10. Pryor RR, Casa DJ, Adams WM, Belval LN, DeMartini JK, Huggins RA, et al. Maximizing athletic performance in the heat. Strength Cond J. 2013;35(6):24–33.

    Article  Google Scholar 

  11. Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):52–64.

    Article  PubMed  Google Scholar 

  12. Armstrong LE, Johnson EC, Casa DJ, Ganio MS, McDermott BP, Yamamoto LM, et al. The American football uniform: uncompensable heat stress and hyperthermic exhaustion. J Athl Train. 2010;45(2):117–27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johnson EC, Ganio MS, Lee EC, Lopez RM, McDermott BP, Casa DJ, et al. Perceptual responses while wearing an American football uniform in the heat. J Athl Train. 2010;45(2):107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Montain SJ, Sawka MN, Cadarette BS, Quigley MD, McKay JM. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol (1985). 1994;77(1):216–22.

    Article  CAS  Google Scholar 

  15. Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J Appl Physiol (1985). 2001;91(5):2055–63.

    Article  CAS  Google Scholar 

  16. Maresh CM, Sokmen B, Armstrong LE, Dias JC, Pryor JL, Creighton BC, et al. Repetitive box lifting performance is impaired in a hot environment: implications for altered work-rest cycles. J Occup Environ Hyg. 2014;11(7):460–8.

    Article  CAS  PubMed  Google Scholar 

  17. Schlader ZJ, Colburn D, Hostler D. Heat strain is exacerbated on the second of consecutive days of fire suppression. Med Sci Sports Exerc. 2017;49(5):999–1005.

    Article  PubMed  Google Scholar 

  18. Meade RD, D’Souza AW, Krishen L, Kenny GP. The physiological strain incurred during electrical utilities work over consecutive work shifts in hot environments: a case report. J Occup Environ Hyg. 2017;14(12):986–94.

    Article  PubMed  Google Scholar 

  19. Cooper ER, Ferrara MS, Casa DJ, Powell JW, Broglio SP, Resch JE, et al. Exertional heat illness in American football players: when is the risk greatest? J Athl Train. 2016;51(8):593–600.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, et al. Risk factors for recruit exertional heat illness by gender and training period. Aviat Space Environ Med. 2006;77(4):415–21.

    PubMed  Google Scholar 

  21. Grundstein AJ, Hosokawa Y, Casa DJ. Fatal exertional heat stroke and American football players: the need for regional heat-safety guidelines. J Athl Train. 2018;53(1):43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gagnon D, Jay O, Kenny GP. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J Physiol. 2013;591(11):2925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Senay LC Jr. Effects of exercise in the heat on body fluid distribution. Med Sci Sports. 1979;11(1):42–8.

    PubMed  Google Scholar 

  24. Sawka MN, Toner MM, Francesconi RP, Pandolf KB. Hypohydration and exercise: effects of heat acclimation, gender, and environment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):1147–53.

    CAS  PubMed  Google Scholar 

  25. Brengelmann GL. Circulatory adjustments to exercise and heat stress. Annu Rev Physiol. 1983;45:191–212.

    Article  CAS  PubMed  Google Scholar 

  26. Rowell LB, Brengelmann GL, Blackmon JR, Twiss RD, Kusumi F. Splanchnic blood flow and metabolism in heat-stressed man. J Appl Physiol. 1968;24(4):475–84.

    Article  CAS  PubMed  Google Scholar 

  27. Ravanelli NM, Hodder SG, Havenith G, Jay O. Heart rate and body temperature responses to extreme heat and humidity with and without electric fans. JAMA. 2015;313(7):724–5.

    Article  PubMed  Google Scholar 

  28. Gagnon D, Romero SA, Cramer MN, Kouda K, Poh PYS, Ngo H, et al. Age modulates physiological responses during fan use under extreme heat and humidity. Med Sci Sports Exerc. 2017;49(11):2333–42.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Larose J, Boulay P, Sigal RJ, Wright HE, Kenny GP. Age-related decrements in heat dissipation during physical activity occur as early as the age of 40. PLoS One. 2013;8(12):e83148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kenny GP, Flouris AD, Dervis S, Friesen BJ, Sigal RJ, Malcolm J, et al. Older adults experience greater levels of thermal and cardiovascular strain during extreme heat exposures. Med Sci Sports Exerc. 2015;47(5s):497.

    Article  Google Scholar 

  31. Kenny GP, Poirier MP, Metsios GS, Boulay P, Dervis S, Friesen BJ, et al. Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults. Temperature. 2017;4(1):79–88.

    Article  Google Scholar 

  32. Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, et al. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females? PLoS One. 2015;10(3):e0119079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Larose J, Wright HE, Stapleton J, Sigal RJ, Boulay P, Hardcastle S, et al. Whole body heat loss is reduced in older males during short bouts of intermittent exercise. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R619–29.

    Article  CAS  PubMed  Google Scholar 

  34. Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, et al. Aging impairs heat loss, but when does it matter? J Appl Physiol. 2014;118(3):299–309.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Armstrong LE, Maresh CM. Exercise-heat tolerance of children and adolescents. Pediatr Exerc Sci. 1995;7(3):239–52.

    Article  Google Scholar 

  36. Drinkwater B, Kupprat I, Denton J, Crist J, Horvath S. Response of prepubertal girls and college women to work in the heat. J Appl Physiol. 1977;43(6):1046–53.

    Article  CAS  PubMed  Google Scholar 

  37. Maliszewski AF, Freedson PS. Is running economy different between adults and children? Pediatr Exerc Sci. 1996;8(4):351–60.

    Article  Google Scholar 

  38. Bergeron M, Devore C, Rice S. Policy statement—climatic heat stress and exercising children and adolescents. Pediatrics. 2011;128(3):e741–7.

    PubMed  Google Scholar 

  39. Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012;590(Pt 23):5963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Havenith G. Individualized model of human thermoregulation for the simulation of heat stress response. J Appl Physiol (1985). 2001;90(5):1943–54.

    Article  CAS  Google Scholar 

  41. Dervis S, Coombs GB, Chaseling GK, Filingeri D, Smoljanic J, Jay O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J Appl Physiol (1985). 2016;120(6):615–23.

    Article  CAS  Google Scholar 

  42. Nelson DA, Deuster PA, O'Connor FG, Kurina LM. Timing and predictors of mild and severe heat illness among new military enlistees. Med Sci Sports Exerc. 2018;50(8):1603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deren TM, Coris EE, Casa DJ, DeMartini JK, Bain AR, Walz SM, et al. Maximum heat loss potential is lower in football linemen during an NCAA summer training camp because of lower self-generated air flow. J Strength Cond Res. 2014;28(6):1656–63.

    Article  PubMed  Google Scholar 

  44. Flouris AD, McGinn R, Poirier MP, Louie JC, Ioannou LG, Tsoutsoubi L, et al. Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature (Austin, Tex). 2018;5(1):86–99.

    Article  Google Scholar 

  45. Vallance JK, Dunn JG, Dunn JLC. Perfectionism, anger, and situation criticality in competitive youth ice hockey. J Sport Exerc Psychol. 2006;28(3):383–406.

    Article  Google Scholar 

  46. Scanlan TK, Lewthwaite R. Social psychological aspects of competition for male youth sport participants: I. predictors of competitive stress. J Sport Exerc Psychol. 1984;6(2):208–26.

    Google Scholar 

  47. Ommundsen Y, Roberts GC, Lemyre P-N, Miller BW. Parental and coach support or pressure on psychosocial outcomes of pediatric athletes in soccer. Clin J Sport Med. 2006;16(6):522–6.

    Article  PubMed  Google Scholar 

  48. Jones TS, Liang AP, Kilbourne EM, Griffin MR, Patriarca PA, Wassilak SGF, et al. Morbidity and mortality associated with the July 1980 heat wave in St Louis and Kansas City, Mo. JAMA. 1982;247(24):3327–31.

    Article  CAS  PubMed  Google Scholar 

  49. Dematte JE, O'mara K, Buescher J, Whitney CG, Forsythe S, McNamee T, et al. Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med. 1998;129(3):173–81.

    Article  CAS  PubMed  Google Scholar 

  50. Kilbourne EM, Choi K, Jones TS, Thacker SB. Risk factors for heatstroke: a case-control study. JAMA. 1982;247(24):3332–6.

    Article  CAS  PubMed  Google Scholar 

  51. Casa DJ, editor. Sport and physical activity in the heat: maximizing performance and safety. Cham: Springer; 2018.

    Google Scholar 

  52. Stitt JT. Fever versus hyperthermia. Fed Proc. 1979;38(1):39–43.

    CAS  PubMed  Google Scholar 

  53. Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM. Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol (1985). 2004;96(5):1943–53.

    Article  CAS  Google Scholar 

  54. Armstrong LE, De Luca JP, Hubbard RW. Time course of recovery and heat acclimation ability of prior exertional heatstroke patients. Med Sci Sports Exerc. 1990;22(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  55. Hosokawa Y, Stearns RL, Casa DJ. Is heat intolerance state or trait? Sports Med. 2019;49(3):365–70.

    Article  PubMed  Google Scholar 

  56. Reske-Nielsen C, Schlosser K, Pascucci RC, Feldman JA. Is it exertional heatstroke or something more? A case report. J Emerg Med. 2016;51(2):e1–5.

    Article  PubMed  Google Scholar 

  57. Hosokawa Y, Casa DJ, Rosenberg H, Capacchione JF, Sagui E, Riazi S, et al. Round table on malignant hyperthermia in physically active populations: meeting proceedings. J Athl Train. 2017;52(4):377–83.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dresoti A. The results of some investigations into the medical aspects of deep mining on the Witwatersrand. J Chem Metal Mining Soc S Afr. 1935;6:102–29.

    Google Scholar 

  59. Taylor NA. Human heat adaptation. Compr Physiol. 2014;4(1):325–65.

    Article  PubMed  Google Scholar 

  60. Singer DE, Byrne C, Chen L, Shao S, Goldsmith J, Niebuhr DW. Risk of exertional heat illnesses associated with sickle cell trait in U.S. Military. Mil Med. 2018;183(7–8):e310–e7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Harris KM, Haas TS, Eichner ER, Maron BJ. Sickle cell trait associated with sudden death in competitive athletes. Am J Cardiol. 2012;110(8):1185–8.

    Article  PubMed  Google Scholar 

  62. Price MJ. Thermoregulation during exercise in individuals with spinal cord injuries. Sports Med. 2006;36(10):863–79.

    Article  PubMed  Google Scholar 

  63. Pandolf KB, Gange RW, Latzka WA, Blank IH, Kraning KK 2nd, Gonzalez RR. Human thermoregulatory responses during heat exposure after artificially induced sunburn. Am J Phys. 1992;262(4 Pt 2):R610–6.

    CAS  Google Scholar 

  64. Cramer MN, Moralez G, Huang MU, Crandall CG. No thermoregulatory impairment in skin graft donor sites during exercise-heat stress. Med Sci Sports Exerc. 2019;51(5):868–73.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wilson SB, Jennings PE, Belch JJ. Detection of microvascular impairment in type I diabetics by laser Doppler flowmetry. Clin Physiol. 1992;12(2):195–208.

    Article  CAS  PubMed  Google Scholar 

  66. Hoeldtke RD, Bryner KD, Hoeldtke ME, Christie I, Ganser G, Hobbs G, et al. Sympathetic sudomotor disturbance in early type 1 diabetes mellitus is linked to lipid peroxidation. Metabolism. 2006;55(11):1524–31.

    Article  CAS  PubMed  Google Scholar 

  67. Carter MR, McGinn R, Barrera-Ramirez J, Sigal RJ, Kenny GP. Impairments in local heat loss in type 1 diabetes during exercise in the heat. Med Sci Sports Exerc. 2014;46(12):2224–33.

    Article  PubMed  Google Scholar 

  68. Kenny GP, Stapleton JM, Yardley JE, Boulay P, Sigal RJ. Older adults with type 2 diabetes store more heat during exercise. Med Sci Sports Exerc. 2013;45(10):1906–14.

    Article  CAS  PubMed  Google Scholar 

  69. Smith HR, Dhatt GS, Melia WM, Dickinson JG. Cystic fibrosis presenting as hyponatraemic heat exhaustion. BMJ. 1995;310(6979):579–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poussel M, Guerci P, Kaminsky P, Heymonet M, Roux-Buisson N, Faure J, et al. Exertional heat stroke and susceptibility to malignant hyperthermia in an athlete: evidence for a link? J Athl Train. 2015;50(11):1212–4.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Roberts WO. Determining a “do not start” temperature for a marathon on the basis of adverse outcomes. Med Sci Sports Exerc. 2010;42(2):226–32.

    Article  PubMed  Google Scholar 

  72. Periard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(Suppl 1):20–38.

    Article  PubMed  Google Scholar 

  73. Pryor JL, Pryor RR, Vandermark LW, Adams EL, VanScoy RM, Casa DJ, et al. Intermittent exercise-heat exposures and intense physical activity sustain heat acclimation adaptations. J Sci Med Sport. 2019;22(1):117–22.

    Article  PubMed  Google Scholar 

  74. Daanen HAM, Racinais S, Periard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409–30.

    Article  PubMed  Google Scholar 

  75. Guy JH, Deakin GB, Edwards AM, Miller CM, Pyne DB. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015;45(3):303–11.

    Article  PubMed  Google Scholar 

  76. Casa DJ, Csillan D, Armstrong LE, Baker LB, Bergeron MF, Buchanan VM, et al. Preseason heat-acclimatization guidelines for secondary school athletics. J Athl Train. 2009;44(3):332–3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kerr ZY, Register-Mihalik JK, Pryor RR, Pierpoint LA, Scarneo SE, Adams WM, et al. The Association between mandated preseason heat acclimatization guidelines and exertional heat illness during preseason high school American football practices. Environ Health Perspect. 2019;127(4):47003.

    Article  PubMed  Google Scholar 

  78. Gardner JW, Kark JA, Karnei K, Sanborn JS, Gastaldo E, Burr P, et al. Risk factors predicting exertional heat illness in male Marine Corps recruits. Med Sci Sports Exerc. 1996;28(8):939–44.

    Article  CAS  PubMed  Google Scholar 

  79. Pandolf KB, Burse RL, Goldman RF. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics. 1977;20(4):399–408.

    Article  CAS  PubMed  Google Scholar 

  80. Mora-Rodriguez R. Influence of aerobic fitness on thermoregulation during exercise in the heat. Exerc Sport Sci Rev. 2012;40(2):79–87.

    Article  PubMed  Google Scholar 

  81. Piwonka RW, Robinson S, Gay VL, Manalis RS. Preacclimatization of men to heat by training. J Appl Physiol. 1965;20(3):379–83.

    Article  CAS  PubMed  Google Scholar 

  82. Lamarche DT, Notley SR, Poirier MP, Kenny GP. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent. Exp Physiol. 2018;103(3):312–7.

    Article  CAS  PubMed  Google Scholar 

  83. Mora-Rodriguez R, Del Coso J, Hamouti N, Estevez E, Ortega JF. Aerobically trained individuals have greater increases in rectal temperature than untrained ones during exercise in the heat at similar relative intensities. Eur J Appl Physiol. 2010;109(5):973–81.

    Article  PubMed  Google Scholar 

  84. Armstrong LE, Pandolf KB. Physical training, cardiorespiratory physical fitness and exercise-heat tolerance. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine at terrestrial extremes. Indianapolis: Benchmark Press; 1988. p. 199–226.

    Google Scholar 

  85. Williams CJ, Williams MG, Eynon N, Ashton KJ, Little JP, Wisloff U, et al. Genes to predict VO2max trainability: a systematic review. BMC Genomics. 2017;18(Suppl 8):831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol (1985). 1992;73(4):1340–50.

    Article  CAS  Google Scholar 

  87. Gonzalez-Alonso J. Separate and combined influences of dehydration and hyperthermia on cardiovascular responses to exercise. Int J Sports Med. 1998;19(Suppl 2):S111–4.

    Article  PubMed  Google Scholar 

  88. Buono MJ, Wall AJ. Effect of hypohydration on core temperature during exercise in temperate and hot environments. Pflugers Arch. 2000;440(3):476–80.

    Article  CAS  PubMed  Google Scholar 

  89. Gisolfi CV, Copping JR. Thermal effects of prolonged treadmill exercise in the heat. Med Sci Sports. 1974;6(2):108–13.

    CAS  PubMed  Google Scholar 

  90. Adams WM, Ferraro EM, Huggins RA, Casa DJ. Influence of body mass loss on changes in heart rate during exercise in the heat: a systematic review. J Strength Cond Res. 2014;28(8):2380–9.

    Article  PubMed  Google Scholar 

  91. Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KB. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol (1985). 1985;59(5):1394–401.

    Article  CAS  Google Scholar 

  92. Armstrong LE, Maresh CM, Gabaree CV, Hoffman JR, Kavouras SA, Kenefick RW, et al. Thermal and circulatory responses during exercise: effects of hypohydration, dehydration, and water intake. J Appl Physiol (1985). 1997;82(6):2028–35.

    Article  CAS  Google Scholar 

  93. Gonzalez-Alonso J, Mora-Rodriguez R, Coyle EF. Stroke volume during exercise: interaction of environment and hydration. Am J Physiol Heart Circ Physiol. 2000;278(2):H321–30.

    Article  CAS  PubMed  Google Scholar 

  94. Judelson DA, Maresh CM, Anderson JM, Armstrong LE, Casa DJ, Kraemer WJ, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37(10):907–21.

    Article  PubMed  Google Scholar 

  95. Kenefick RW, Cheuvront SN. Hydration for recreational sport and physical activity. Nutr Rev. 2012;70(Suppl 2):S137–42.

    Article  PubMed  Google Scholar 

  96. Goodman SPJ, Moreland AT, Marino FE. The effect of active hypohydration on cognitive function: a systematic review and meta-analysis. Physiol Behav. 2019;204:297–308.

    Article  CAS  PubMed  Google Scholar 

  97. Baker LB, Dougherty KA, Chow M, Kenney WL. Progressive dehydration causes a progressive decline in basketball skill performance. Med Sci Sports Exerc. 2007;39(7):1114–23.

    Article  PubMed  Google Scholar 

  98. Yoda T, Crawshaw LI, Nakamura M, Saito K, Konishi A, Nagashima K, et al. Effects of alcohol on thermoregulation during mild heat exposure in humans. Alcohol. 2005;36(3):195–200.

    Article  CAS  PubMed  Google Scholar 

  99. Kalant H, Lê AD. Effects of ethanol on thermoregulation. Pharmacol Ther. 1983;23(3):313–64.

    Article  CAS  PubMed  Google Scholar 

  100. Hobson RM, Maughan RJ. Hydration status and the diuretic action of a small dose of alcohol. Alcohol Alcohol. 2010;45(4):366–73.

    Article  CAS  PubMed  Google Scholar 

  101. Shirreffs SM, Maughan RJ. Restoration of fluid balance after exercise-induced dehydration: effects of alcohol consumption. J Appl Physiol (1985). 1997;83(4):1152–8.

    Article  CAS  Google Scholar 

  102. Dewasmes G, Bothorel B, Hoeft A, Candas V. Regulation of local sweating in sleep-deprived exercising humans. Eur J Appl Physiol Occup Physiol. 1993;66(6):542–6.

    Article  CAS  PubMed  Google Scholar 

  103. Tokizawa K, Sawada S, Tai T, Lu J, Oka T, Yasuda A, et al. Effects of partial sleep restriction and subsequent daytime napping on prolonged exertional heat strain. Occup Environ Med. 2015;72(7):521–8.

    Article  PubMed  Google Scholar 

  104. Muginshtein-Simkovitch E, Dagan Y, Cohen-Zion M, Waissengrin B, Ketko I, Heled Y. Heat tolerance after total and partial acute sleep deprivation. Chronobiol Int. 2015;32(5):717–24.

    Article  PubMed  Google Scholar 

  105. Kolka MA, Stephenson LA. Exercise thermoregulation after prolonged wakefulness. J Appl Physiol (1985). 1988;64(4):1575–9.

    Article  CAS  Google Scholar 

  106. Vaara J, Kyrolainen H, Koivu M, Tulppo M, Finni T. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature. Eur J Appl Physiol. 2009;105(3):439–44.

    Article  PubMed  Google Scholar 

  107. Oliver SJ, Costa RJ, Laing SJ, Bilzon JL, Walsh NP. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107(2):155–61.

    Article  PubMed  Google Scholar 

  108. Moore JP, Harper Smith AD, Di Felice U, Walsh NP. Three nights of sleep deprivation does not alter thermal strain during exercise in the heat. Eur J Appl Physiol. 2013;113(9):2353–60.

    Article  PubMed  Google Scholar 

  109. Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry. 2016;80(1):40–52.

    Article  PubMed  Google Scholar 

  110. Wolkow A, Aisbett B, Reynolds J, Ferguson SA, Main LC. The impact of sleep restriction while performing simulated physical firefighting work on cortisol and heart rate responses. Int Arch Occup Environ Health. 2016;89(3):461–75.

    Article  PubMed  Google Scholar 

  111. Mougin F, Simon-Rigaud ML, Davenne D, Renaud A, Garnier A, Kantelip JP, et al. Effects of sleep disturbances on subsequent physical performance. Eur J Appl Physiol Occup Physiol. 1991;63(2):77–82.

    Article  CAS  PubMed  Google Scholar 

  112. Ely BR, Ely MR, Cheuvront SN. Marginal effects of a large caffeine dose on heat balance during exercise-heat stress. Int J Sport Nutr Exerc Metab. 2011;21(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  113. Twycross-Lewis R, Kilduff LP, Wang G, Pitsiladis YP. The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects. Amino Acids. 2016;48(8):1843–55.

    Article  CAS  PubMed  Google Scholar 

  114. Crandall CG, Vongpatanasin W, Victor RG. Mechanism of cocaine-induced hyperthermia in humans. Ann Intern Med. 2002;136(11):785–91.

    Article  CAS  PubMed  Google Scholar 

  115. Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):1883–928.

    Article  PubMed  Google Scholar 

  116. Pryor JL, Johnson EC, Roberts WO, Pryor RR. Application of evidence-based recommendations for heat acclimation: individual and team sport perspectives. Temperature. 2019;6(1):37–49.

    Article  Google Scholar 

  117. Saunders PU, Garvican-Lewis LA, Chapman RF, Periard JD. Special environments: altitude and heat. Int J Sport Nutr Exerc Metab. 2019;29(2):210–9.

    Article  PubMed  Google Scholar 

  118. Periard JD, Caillaud C, Thompson MW. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions. Eur J Appl Physiol. 2012;112(6):1989–99.

    Article  PubMed  Google Scholar 

  119. Sawka MN, Young AJ, Latzka WA, Neufer PD, Quigley MD, Pandolf KB. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol (1985). 1992;73(1):368–75.

    Article  CAS  Google Scholar 

  120. Shvartz E, Shapiro Y, Magazanik A, Meroz A, Birnfeld H, Mechtinger A, et al. Heat acclimation, physical fitness, and responses to exercise in temperate and hot environments. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(4):678–83.

    CAS  PubMed  Google Scholar 

  121. Avellini BA, Shapiro Y, Fortney SM, Wenger CB, Pandolf KB. Effects on heat tolerance of physical training in water and on land. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(5):1291–8.

    CAS  PubMed  Google Scholar 

  122. Nadel ER, Pandolf KB, Roberts MF, Stolwijk JA. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol. 1974;37(4):515–20.

    Article  CAS  PubMed  Google Scholar 

  123. EFSA Panel on Dietetic Prfoducts, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for water. EFSA J. 2010;8(3):1459. https://doi.org/10.2903/j.efsa.2010.1459.

    Article  Google Scholar 

  124. Kenefick RW. Drinking strategies: planned drinking versus drinking to thirst. Sports Med. 2018;48(Suppl 1):31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  125. McDermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, et al. National Athletic Trainers’ Association position statement: fluid replacement for the physically active. J Athl Train. 2017;52(9):877–95.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bergeron MF. Muscle cramps during exercise-is it fatigue or electrolyte deficit? Curr Sports Med Rep. 2008;7(4):S50–S5.

    Article  Google Scholar 

  127. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.

    Article  PubMed  Google Scholar 

  128. Panel on Dietary Reference Intakes for Electrolytes and Water. Institute of Medicine Dietary reference intakes for water, potassium, sodium, chloride, and sulfate: National Academies Press; 2005. https://www.nap.edu/read/10925/chapter/1. Accessed 15 May 2019.

  129. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–27.

    Article  PubMed  Google Scholar 

  130. Shirreffs SM. Restoration of fluid and electrolyte balance after exercise. Can J Appl Physiol. 2001;26(Suppl):S228–35.

    Article  PubMed  Google Scholar 

  131. Beelen M, Burke LM, Gibala MJ, van Loon LJ. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.

    Article  CAS  PubMed  Google Scholar 

  132. Adams WM, Hosokawa Y, Casa DJ. Body-cooling paradigm in sport: maximizing safety and performance during competition. J Sport Rehabil. 2016;25(4):382–94.

    Article  PubMed  Google Scholar 

  133. Bongers CC, Thijssen DH, Veltmeijer MT, Hopman MT, Eijsvogels TM. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377–84.

    Article  PubMed  Google Scholar 

  134. Stevens CJ, Taylor L, Dascombe BJ. Cooling during exercise: an overlooked strategy for enhancing endurance performance in the heat. Sports Med. 2017;47(5):829–41.

    Article  PubMed  Google Scholar 

  135. Morris NB, Jay O. To drink or to pour: How should athletes use water to cool themselves? Temperature (Austin, Tex). 2016;3(2):191–4.

    Article  Google Scholar 

  136. Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.

    Article  PubMed  Google Scholar 

  137. Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the contiguous United States. Appl Geogr. 2015;56:55–60.

    Article  Google Scholar 

  138. Kark JA, Burr PQ, Wenger CB, Gastaldo E, Gardner JW. Exertional heat illness in Marine Corps recruit training. Aviat Space Environ Med. 1996;67(4):354–60.

    CAS  PubMed  Google Scholar 

  139. Grundstein A, Cooper E, Ferrara M, Knox JA. The geography of extreme heat hazards for American football players. Appl Geogr. 2014;46:53–60.

    Article  Google Scholar 

  140. Fiala D, Havenith G, Brode P, Kampmann B, Jendritzky G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol. 2012;56(3):429–41.

    Article  PubMed  Google Scholar 

  141. Bröde P, Fiala D, Kampmann B. Considering varying clothing, activities and exposure times with the Universal Thermal Climate Index UTCI. Proceedings 21st International Congress of Biometeorology, 3–7 Sept, 2017, Durham University, UK.

    Google Scholar 

  142. Roberts WO. Exertional heat stroke during a cool weather marathon: a case study. Med Sci Sports Exerc. 2006;38(7):1197–203.

    Article  PubMed  Google Scholar 

  143. Gosling CM, Gabbe BJ, McGivern J, Forbes AB. The incidence of heat casualties in sprint triathlon: the tale of two Melbourne race events. J Sci Med Sport. 2008;11(1):52–7.

    Article  PubMed  Google Scholar 

  144. Eberman LE, Cleary MA. Development of a heat-illness screening instrument using the Delphi panel technique. J Athl Train. 2011;46(2):176–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Luke Pryor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pryor, J.L., PĂ©riard, J.D., Pryor, R.R. (2020). Predisposing Factors for Exertional Heat Illness. In: Adams, W., Jardine, J. (eds) Exertional Heat Illness. Springer, Cham. https://doi.org/10.1007/978-3-030-27805-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27805-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27804-5

  • Online ISBN: 978-3-030-27805-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics