Skip to main content

A Proof of Turing Completeness in Bitcoin Script

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1037))

Included in the following conference series:

Abstract

The concept of a Turing machine has been well defined. It would be sufficient to show that Bitcoin uses a dual-stack architecture that acts as a dual counter machine. Such systems have already been demonstrated as being Turing complete. We demonstrate that Bitcoin script is a minimal family of which \( \lambda \lambda \) and R are members. Further, using the compositional product rule and the iteration rule, we demonstrate that Bitcoin scripting is Turing complete with the limitations imposed on any real-world computer. The limitation is that there cannot be an infinite tape. Iterations can be simulated using an “unrolled” loop function with allocation to the “Alt” stack. As the product rule says, if A, B are machines, then A.B is also a machine. The iteration rule shows that if A is a machine, then (A) is also a machine. Further, the minimum power of A under which the observed square of the final configuration is blank. The consequence of such rules is that for every partial recursive function of in variables we can show that it can be evaluated by a machine of the proposed family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Marvin Minsky, Computation: Finite and Infinite Machines, Prentice–Hall, Inc., N.J., 1967. See Chapter 8, Section 8.2 “Unsolvability of the Halting Problem.”

  2. 2.

    Here \( \Omega \) is equivalent to \( \Omega ^{{\prime }} -\Omega _{R} \).

  3. 3.

    See https://en.Bitcoin.it/wiki/Script and http://davidederosa.com/basic-blockchain-programming/Bitcoin-script-language-part-one/.

  4. 4.

    See http://fortranwiki.org/fortran/show/HomePage and https://gcc.gnu.org/fortran/.

References

  1. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and push-down automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 111–174. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Bailey, C.: Inter-boundary scheduling of stack operands: a preliminary study. In: Proceedings of Euroforth Conference, pp. 3–11 (2000)

    Google Scholar 

  3. Bohm, C., Jacopini, G.: Nuove tecniche di programmazione semplificanti la sintesi di machine universali di Turing. Rend. Acc. Naz. Lincei, serie VIII, vol. 32 fasc. 6, p. 913-022 (1962)

    Google Scholar 

  4. Davis, M.: Computability and Unsolvability. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  5. Ginsburg, S., Greibach, S., Harrison, M.: Stack automata and compiling. JACM 14(1), 172–201 (1967)

    Article  MathSciNet  Google Scholar 

  6. Ginsburg, S., Greibach, S., Harrison, M.: One-way stack automata. JACM 14(2), 389–418 (1967)

    Article  MathSciNet  Google Scholar 

  7. Hermes, H.: Aufzahlbarkeit, Entscheidbarket, Berechenbarkeit. Springer, Berlin (1961)

    Book  Google Scholar 

  8. Hopcroft, J., Ullman, J.: Nonerasing stack automata. J. Comput. Syst. Sci. 1(2), 166–186 (1967)

    Article  Google Scholar 

  9. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison Wesley, Boston (2006)

    MATH  Google Scholar 

  10. Ianov, Yu.I.: On the equivalence and transformation of program schemes. Doklady Akad. Nauk S.S.S.R. 113, 39–42 (1957). [in Russian]

    Google Scholar 

  11. Koopman, P.: A preliminary exploration of optimized stack code generation. J. Forth Appl. Res. 6(3), 241–251 (1994)

    Google Scholar 

  12. Lee, C.Y.: Automata and finite automata. Bell Syst. Tech. J. 39, 1267–1295 (1960)

    Article  MathSciNet  Google Scholar 

  13. Robinson, J.: General recursive functions. Proc. Amer. Math. Soc. 1, 703–718 (1950)

    Article  MathSciNet  Google Scholar 

  14. Shannon, M., Bailey C.: Global stack allocation: register allocation for stack machines. In: Proceedings of Euroforth Conference. Complang – TU Wien, Cambridge (2006)

    Google Scholar 

  15. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. Ass. Comp. Mach. 10, 217–255 (1963)

    Article  MathSciNet  Google Scholar 

  16. Sipser, M.: Introduction to the Theory of Computation, preliminary edn., section 2.2: Pushdown Automata, pp. 101–114. PWS Publishing Co., Boston (1997)

    Google Scholar 

  17. Smullyan, R.M.: Theory of Formal Systems. Annals of Mathematics Studies, vol. 47. Princeton University Press, Princeton (1961)

    Google Scholar 

  18. Turing, A.M.: On computable numbers with an application to the Entscheidungs-problem. Proc. Lond. Math. Soc. {2}, 42 (1936-7), pp. 230-265: addendum and corrigendum, 43, pp. 544-556 (1937)

    Google Scholar 

  19. Wang, H.: A variant to Turing’s theory of computing machines. J. ACM 4, 63–92 (1957)

    Article  MathSciNet  Google Scholar 

  20. Cockshott, W.P., Michaelson, G.J.: Tangled Tapes: Infinity, Interaction and Turing Machines (2012). https://www.semanticscholar.org/paper/Tangled-Tapes-Infinity-Interaction-and-Turing-Mach-Cockshott-Michaelson/19a6bcb7edccff58b6a2d5ba6a451b9ad4956312. Accessed 13 Mar 2019

The following websites provide background information

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wright, C.S. (2020). A Proof of Turing Completeness in Bitcoin Script. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1037. Springer, Cham. https://doi.org/10.1007/978-3-030-29516-5_23

Download citation

Publish with us

Policies and ethics