Skip to main content

MVP-Net: Multi-view FPN with Position-Aware Attention for Deep Universal Lesion Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11769))

Abstract

Universal lesion detection (ULD) on computed tomography (CT) images is an important but underdeveloped problem. Recently, deep learning-based approaches have been proposed for ULD, aiming to learn representative features from annotated CT data. However, the hunger for data of deep learning models and the scarcity of medical annotation hinders these approaches to advance further. In this paper, we propose to incorporate domain knowledge in clinical practice into the model design of universal lesion detectors. Specifically, as radiologists tend to inspect multiple windows for an accurate diagnosis, we explicitly model this process and propose a multi-view feature pyramid network (FPN), where multi-view features are extracted from images rendered with varied window widths and window levels; to effectively combine this multi-view information, we further propose a position-aware attention module. With the proposed model design, the data-hunger problem is relieved as the learning task is made easier with the correctly induced clinical practice prior. We show promising results with the proposed model, achieving an absolute gain of \(\mathbf {5.65\%}\) (in the sensitivity of FPs@4.0) over the previous state-of-the-art on the NIH DeepLesion dataset.

Z. Li and S. Zhang—Equal contribution. This work is done when Zihao Li is an intern at Deepwise AI Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Windowing, also known as gray-level mapping, is used to change the appearance of the picture to highlight particular structures.

  2. 2.

    As a common practice in machine learning, we refer to reconstruction under a certain window width and window level as a view of that CT.

References

  1. Wang, B., Qi, G., Tang, S., Zhang, L., Deng, L., Zhang, Y.: Automated pulmonary nodule detection: high sensitivity with few candidates. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 759–767. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_84

    Chapter  Google Scholar 

  2. Lee, S., Bae, J.S., Kim, H., Kim, J.H., Yoon, S.: Liver lesion detection from weakly-labeled multi-phase CT volumes with a grouped single shot multibox detector. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 693–701. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_77

    Chapter  Google Scholar 

  3. He, K., Gkioxari, G., Dollr, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  4. Lin, T.-Y., Dollr, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: ICCV, pp. 2117–2125 (2017)

    Google Scholar 

  5. Tang, Y., Yan, K., Tang, Y., Liu, J., Xiao, J., Summers, R.M.: ULDor: a universal lesion detector for CT scans with pseudo masks and hard negative example mining. arXiv preprint arXiv:1901.06359 (2019)

  6. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  7. Yan, K., et al.: Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. In: CVPR, pp. 9261–9270 (2018)

    Google Scholar 

  8. Yan, K., Lu, L., Summers, R.M.: Unsupervised body part regression via spatially self-ordering convolutional neural networks. In: ISBI, pp. 1022–1025 (2018)

    Google Scholar 

  9. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  10. Dai, J., Yi, L., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS, pp. 379–387 (2016)

    Google Scholar 

Download references

Acknowledgement

This work is funded by the National Natural Science Foundation of China (Grant No. 61876181, 61721004, 61403383, 61625201, 61527804) and the Projects of Chinese Academy of Sciences (Grant QYZDB-SSW-JSC006 and Grant 173211KYSB20160008). We would like to thank Feng Liu for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhou Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Zhang, S., Zhang, J., Huang, K., Wang, Y., Yu, Y. (2019). MVP-Net: Multi-view FPN with Position-Aware Attention for Deep Universal Lesion Detection. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11769. Springer, Cham. https://doi.org/10.1007/978-3-030-32226-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32226-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32225-0

  • Online ISBN: 978-3-030-32226-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics