Skip to main content

Abstract

Syngas produced from biomass and biowaste gasification is a versatile renewable fuel and feedstock for chemical synthesis or heat and power production. Bio-syngas can be produced from different biomass feedstock (e.g. lignocellulosic biomass, pyrolysis oil, bioethanol, biogas) through thermal and/or catalytic reforming and gasification processes. The typical components of raw syngas can be classified into three groups: non-condensable gases (e.g. H2, CO, CH4 and CO2), condensable gases (e.g. H2O and tars) and impurities (e.g. HCl, NH3, H2S and particulates). Depending on the application, raw syngas may need to be cleaned of impurities and conditioned to adjust the H2/CO ratio in order to meet the requirements of environmental regulations and downstream processes respectively. Hence, an accurate characterization of the syngas chemical composition, at the different processing stages, is important to control and optimize the process efficiency. In this chapter, various methods and equipment for sampling, preconditioning and analyzing the three groups of syngas components will be discussed. Analyses of the equipment detection limits, gas matrix sensitivity, and overall accuracy will also be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richardson, Y., Blin, J., Julbe, A.: A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts. Prog. Energy Combust. Sci. 38(6), 765–781 (2012)

    Article  CAS  Google Scholar 

  2. Sikarwar, V.S., Zhao, M., Fennell, P.S., Shah, N., Anthony, E.J.: Progress in bio-fuel production from gasification. Prog. Energy Combust. Sci. 61, 189–248 (2017)

    Article  Google Scholar 

  3. Watson, J., Zhang, Y., Si, B., Chen, W.-T., de Souza, R.: Gasification of biowaste: a critical review and outlooks. Renew. Sustain. Energy Rev. 83, 1–17 (2018)

    Article  CAS  Google Scholar 

  4. Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from bio-mass: chemistry, catalysts, and engineering. Chem. Rev. 106(9), 4044–4098 (2006)

    Article  CAS  Google Scholar 

  5. Mota, N., Alvarez-Galvan, C., Navarro, R.M., Fierro, J.L.: Biogas as a source of renewable syngas production: advances and challenges. Biofuels 2(3), 325–343 (2011)

    Article  CAS  Google Scholar 

  6. Rossetti, I., Compagnoni, M., Finocchio, E., Ramis, G., Di Michele, A., Zucchini, A., Dzwigaj, S.: Syngas production via steam reforming of bioethanol over Ni–BEA catalysts: a BTL strategy. Int. J. Hydrog. Energy 41(38), 16878–16889 (2016)

    Article  CAS  Google Scholar 

  7. Zhang, Y., Brown, T.R., Hu, G., Brown, R.C.: Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming. Biomass Bioenergy 51, 99–108 (2013)

    Article  CAS  Google Scholar 

  8. Chew, J.J., Doshi, V.: Recent advances in biomass pretreatment-Torrefaction fundamentals and technology. Renew. Sustain. Energy Rev. 15(8), 4212–4222 (2011)

    Article  Google Scholar 

  9. Zhang, W.: Automotive fuels from biomass via gasification. Fuel Process. Technol. 91(8), 866–876 (2010)

    Article  CAS  Google Scholar 

  10. Richardson, Y., Drobek, M., Julbe, A., Blin, J., Pinta, F.: Chapter 8—Biomass Gasification to Produce Syngas. In: Pandey, A., Bhaskar, T., Stöcker, M., Sukumaran, R.K. (eds.) Recent Advances in Thermo-Chemical Conversion of Biomass, pp. 213–250. Elsevier, Boston (2015)

    Chapter  Google Scholar 

  11. Rios, M.L.V., González, A.M., Lora, E.E.S., del Olmo, O.A.A.: Reduction of tar generated during biomass gasification: a review. Biomass Bioenergy 108, 345–370 (2018)

    Article  CAS  Google Scholar 

  12. Woolcock, P.J., Brown, R.C.: A review of cleaning technologies for biomass-derived syngas. Biomass Bioenergy 52, 54–84 (2013)

    Article  CAS  Google Scholar 

  13. Bartels, M., Lin, W., Nijenhuis, J., Kapteijn, F., van Ommen, J.R.: Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention. Prog. Energy Combust. Sci. 34(5), 633–666 (2008)

    Article  CAS  Google Scholar 

  14. DD CEN/TS 15439: Biomass gasification—Tar and particles in product gases—Sampling and analysis. https://shop.bsigroup.com/ProductDetail/?pid=000000000030163214 (2006) Accessed Mar 2007

  15. Sigma-Aldrich: Gas sampling bags and samplers. https://www.sigmaaldrich.com/analytical-chromatography/air-monitoring/gas-sampling-bags.html#foilbags. Accessed Mar 2018

  16. Restek: Sacs Tedlar. http://www.restek.fr/catalog/view//22052-3795. Accessed March 2018

  17. Poole, C.F.: Gas Chromatography. 1st edn. Elsevier (2012)

    Google Scholar 

  18. Ephraim, A.: Valorization of wood and plastic waste by pyro-gasification and syn-gas cleaning. Ph.D. Thesis, Ecole nationale des Mines d’Albi-Carmaux, France (2016)

    Google Scholar 

  19. Andersson, R., Boutonnet, M., Järås, S.: On-line gas chromatographic analysis of higher alcohol synthesis products from syngas. J. Chromatogr. A 1247, 134–145 (2012)

    Article  CAS  Google Scholar 

  20. Rauch, R., Bosch, K., Hofbauer, H., Świerczyński, D., Courson, C., Kiennemann, A.: Comparison of different olivines for biomass steam gasification, pp. 799–809. CPL Press (2004)

    Google Scholar 

  21. Kübel, M.: Teerbildung und Teerkonversion bei der Biomassevergasung—Anwen-dung der nasschemischen Teerbestimmung nach CEN-Standard. Cuvillier Verlag (2007)

    Google Scholar 

  22. Neubert, M., Reil, S., Wolff, M., Pöcher, D., Stork, H., Ultsch, C., Meiler, M., Mes-ser, J., Kinzler, L., Dillig, M., Beer, S., Karl, J.: Experimental comparison of solid phase adsorption (SPA), activated carbon test tubes and tar protocol (DIN CEN/TS 15439) for tar analysis of biomass derived syngas. Biomass Bioenergy 105, 443–452 (2017)

    Article  CAS  Google Scholar 

  23. Brage, C., Sjöström, K.: An outline of R&D work supporting the tar guideline. Royal Institute of Technology (KTH). Technical report (2002)

    Google Scholar 

  24. Prando, D., Shivananda Ail, S., Chiaramonti, D., Baratieri, M., Dasappa, S.: Characterisation of the producer gas from an open top gasifier: assessment of different tar analysis approaches. Fuel 181, 566–572 (2016)

    Article  CAS  Google Scholar 

  25. van de Kamp, W., de Wild, P., Zielke, U., Suomalainen, M., Knoef, H., Good, J., Liliedahl, T., Unger, C., Whitehouse, M., Neeft, J., van de Hoek, H., Kiel, J.: Tar measurement standard for sampling and analysis of tars and particles in biomass gasification product gas. In: 4th European Biomass Conference and Exhibition, Paris, France (2015)

    Google Scholar 

  26. Grootjes, A. J.: Tar measurement by the Solid Phase Adsorption (SPA) method. In: 19th European Biomass Conference and Exhibition (2011)

    Google Scholar 

  27. Israelsson, M., Seemann, M., Thunman, H.: Assessment of the solid-phase adsorption method for sampling biomass-derived tar in industrial environments. Energy Fuels 27(12), 7569–7578 (2013)

    Article  CAS  Google Scholar 

  28. Osipovs, S.: Comparison of efficiency of two methods for tar sampling in the syn-gas. Fuel 103, 387–392 (2013)

    Article  CAS  Google Scholar 

  29. Engvall, K., Whitty, K.: Measurement and characterization of tars using the spa method: on-going developments on tar analysis. In: Workshop IEA Bioenergy Task 33, Lucerne University of Applied Sciences (2016)

    Google Scholar 

  30. Hasler, P., Nussbaumer, T.: Sampling and analysis of particles and tars from bio-mass gasifiers. Biomass Bioenergy 18(1), 61–66 (2000)

    Article  CAS  Google Scholar 

  31. Brage, C., Yu, Q.C., Chen, G., Sjöström, K.: Tar evolution profiles obtained from gasification of biomass and coal. Biomass Bioenergy 18(1), 87–91 (2000)

    Article  CAS  Google Scholar 

  32. Brage, C., Yu, Q.C., Chen, G., Sjöström, K.: Use of amino phase adsorbent for biomass tar sampling and separation. Fuel 76(2), 137–142 (1997)

    Article  CAS  Google Scholar 

  33. Dufour, A., Girods, P., Masson, E., Normand, S., Rogaume, Y., Zoulalian, A.: Comparison of two methods of measuring wood pyrolysis tar. J. Chromatogr. A 1164(1), 240–247 (2007)

    Article  CAS  Google Scholar 

  34. Reil, S., Karl, J., Beer, S.: Impact of gasification conditions on the tar yield of stratified downdraft gasifiers. In: Papers of the 22nd European Biomass Conference, 585–590 (2014)

    Google Scholar 

  35. Osipovs, S.: Sampling of benzene in tar matrices from biomass gasification using two different solid-phase sorbents. Anal. Bioanal. Chem. 391(4), 1409–1417 (2008)

    Article  CAS  Google Scholar 

  36. González, I.O., Pastor, R.M.P., Hervás, J.M.S.: Sampling of tar from sewage sludge gasification using solid phase adsorption. Anal. Bioanal. Chem. 403(7), 2039–2046 (2012)

    Article  CAS  Google Scholar 

  37. Sun, R., Zobel, N., Neubauer, Y., Cardenas Chavez, C., Behrendt, F.: Analysis of gas-phase polycyclic aromatic hydrocarbon mixtures by laser-induced fluorescence. Opt. Lasers Eng. 48(12), 1231–1237 (2010)

    Article  Google Scholar 

  38. Carpenter, D.L., Deutch, S.P., French, R.J.: Quantitative measurement of biomass gasifier tars using a molecular-beam mass spectrometer: comparison with traditional impinger sampling. Energy Fuels 21(5), 3036–3043 (2007)

    Article  CAS  Google Scholar 

  39. Fendt, A., Streibel, T., Sklorz, M., Richter, D., Dahmen, N., Zimmermann, R.: On-line process analysis of biomass flash pyrolysis gases enabled by soft photoionization mass spectrometry. Energy Fuels 26(1), 701–711 (2012)

    Article  CAS  Google Scholar 

  40. Neubauer, Y.: Online-analyse von teer aus der biomassevergasung mit lasermassen-spektrometrie. Ph.D. Thesis, Technische Universität Berlin, Berlin (2008)

    Google Scholar 

  41. Defoort, F., Thiery, S., Ravel, S.: A promising new on-line method of tar quantification by mass spectrometry during steam gasification of biomass. Biomass Bioenergy 65, 64–71 (2014)

    Article  CAS  Google Scholar 

  42. Ahmadi, M., Knoef, H., Van de Beld, B., Liliedahl, T., Engvall, K.: Development of a PID based on-line tar measurement method—Proof of concept. Fuel 113, 113–121 (2013)

    Article  CAS  Google Scholar 

  43. Gredinger, A., Spörl, R., Scheffknecht, G.: Comparison measurements of tar content in gasification systems between an online method and the tar protocol. Biomass Bioenergy 111 (2017)

    Article  CAS  Google Scholar 

  44. Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S.: A review on biomass gasification syngas cleanup. Appl. Energy 155, 294–307 (2015)

    Article  CAS  Google Scholar 

  45. Chiche, D., Diverchy, C., Lucquin, A.-C., Porcheron, F., Defoort, F.: Synthesis Gas Purification. Oil Gas Sci. Technol. Rev. D’IFP Energ. Nouv 8(4), 707–723 (2013)

    Article  CAS  Google Scholar 

  46. Hoekman, S.K., Robbins, C., Wang, X., Zielinska, B., Schuetzle, D., Schuetzle, R.: Characterization of trace contaminants in syngas from the thermochemical conversion of biomass. Biomass Convers. Biorefinery 3(4), 271–282 (2013)

    Article  CAS  Google Scholar 

  47. Norton, G.A., Brown, R.C.: Wet chemical method for determining levels of ammonia in syngas from a biomass gasifier. Energy Fuels 19(2), 618–624 (2005)

    Article  CAS  Google Scholar 

  48. Stahlberg, P., Lappi, M., Kurkela, E., Simell, P., Oesch, P.: Sampling of Contaminants from Biomass Gasifiers. IEA Thermal Gasification of Biomass Task. Brussels, Belgium (1998)

    Google Scholar 

  49. Zhou, J., Masutani, S.M., Ishimura, D.M., Turn, S.Q., Kinoshita, C.M.: Release of fuel-bound nitrogen during biomass gasification. Ind. Eng. Chem. Res. 39(3), 626–634 (2000)

    Article  CAS  Google Scholar 

  50. De Jong, W., Ünal, Ö., Andries, J., Hein, K.R.G., Spliethoff, H.: Biomass and fossil fuel conversion by pressurised fluidised bed gasification using hot gas ceramic filters as gas cleaning. Biomass Bioenergy 25(1), 59–83 (2003)

    Article  CAS  Google Scholar 

  51. Agilent Technologies Inc.: Dual Plasma Sulfur and Nitrogen Chemiluminescence Detectors Dual Plasma Technology Dual Plasma Burner and Controller. https://www.agilent.com/cs/library/selectionguide/public/5989-6119EN.pdf (2006). Accessed 9 Jan 2018

  52. Broer, K.M., Johnston, P.A., Haag, A., Brown, R.C.: Resolving inconsistencies in measurements of hydrogen cyanide in syngas. Fuel 140, 97–101 (2015)

    Article  CAS  Google Scholar 

  53. Vriesman, P., Heginuz, E., Sjöström, K.: Biomass gasification in a laboratory-scale AFBG: influence of the location of the feeding point on the fuel-N conversion. Fuel 79(11), 1371–1378 (2000)

    Article  CAS  Google Scholar 

  54. Cui, H., Turn, S.Q., Keffer, V., Evans, D., Tran, T., Foley, M.: Contaminant estimates and removal in product gas from biomass steam gasification. Energy Fuels 24(2), 1222–1233 (2010)

    Article  CAS  Google Scholar 

  55. Meng, X.: Biomass gasification: The understanding of sulfur, tar, and char reaction in fluidized bed gasifiers. In: TU Delft Repositories, Delft University of Technology (2012)

    Google Scholar 

  56. Balas, M., Lisy, M., Skala, Z., Jiri, P.: Wet scrubber for cleaning of syngas from bi-omass gasification. Adv. Environ. Sci. Dev. Chem. 195–201 (2014)

    Google Scholar 

  57. ECN: Biomass gasification—Tar and particles in product gases—Sampling and analysis. http://www.eeci.net/results/pdf/CEN-Tar-Standard-draft-version-2_1-new-template-version-05-11-04.pdf (2004). Accessed 10 Oct 2004

  58. Gustafsson, E.: Characterization of particulate matter from atmospheric fluidized bed biomass gasifiers. Doctoral Dissertation, Linnaeus University (2011)

    Google Scholar 

  59. Akudo, C.O., Theegala, C.S.: Quantification of tars, particulates, and higher heating values in gases produced from a biomass gasifier. BioResources 9(3), 5627–5635 (2014)

    Article  Google Scholar 

  60. Wang, Robbins, C., Hoekman, S.K., Chow, J.C., Watson, J.G., Schuetzle, D.: Dilution sampling and analysis of particulate matter in biomass-derived syngas. Front. Environ. Sci. Eng. China 5(3), 320–330 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustina Ephraim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ephraim, A., Munirathinam, R., Nzihou, A., Pham Minh, D., Richardson, Y. (2020). Syngas. In: Nzihou, A. (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-35020-8_11

Download citation

Publish with us

Policies and ethics