Skip to main content

Numerical Modelling of Ice Sheets, Streams, and Shelves

  • Chapter
  • First Online:
Glaciers and Ice Sheets in the Climate System
  • 1674 Accesses

Abstract

The chapter describes numerical methods for ice sheet and ice shelf models, focussing on the use of explicit finite-difference schemes to solve the shallow ice approximation for ice sheets and the shallow shelf approximation for ice shelves. The aspects covered include numerical stability and convergence. Examples of computer code in Matlab are given to aid the exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Evaluating the exact solution at a grid point would give a different value from the one we compute by the numerical scheme! Of course we plan that these numbers will be close, but that needs checking or proof.

  2. 2.

    The delta function \(\delta (x)\) is a generalised function having the property that it is zero everywhere, except at zero, where it is infinite in such a way that the integral \(\int _{-\infty }^\infty \delta (x)\,dx=1\).

  3. 3.

    Specifically, we can compute \(V_0=\displaystyle {\frac{2\pi n}{n+1}B\left( \frac{2n}{n+1},\frac{3n+1}{2n+1}\right) R_0^2H_0}\), where B(zw) is the beta function. For \(n=3\), this gives \(V_0=1.974R_0^2H_0\).

References

  1. Mahaffy MW (1976) A three-dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J Geophys Res 81:1059–1066

    Article  Google Scholar 

  2. Nye JF, Durham WB, Schenk PM, Moore JM (2000) The instability of a South Polar Cap on Mars composed of carbon dioxide. Icarus 144:449–455

    Article  Google Scholar 

  3. Le Brocq AM, Payne AJ, Vieli A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst Sci Data 2:247–260

    Article  Google Scholar 

  4. Truffer M, Echelmeyer KA (2003) Of isbræ and ice streams. Ann Glaciol 36:66–72

    Article  Google Scholar 

  5. MacAyeal DR, Rommelaere V, Huybrechts P, Hulbe C, Determann J, Ritz C (1996) An ice-shelf model test based on the Ross ice shelf. Ann Glaciol 23:46–51

    Article  Google Scholar 

  6. Fowler AC, Larson DA (1978) On the flow of polythermal glaciers I. Model and preliminary analysis. Proc R Soc Lond A 363:217–242

    Article  Google Scholar 

  7. Morland LW, Johnson IR (1980) Steady motion of ice sheets. J Glaciol 25:229–246

    Article  Google Scholar 

  8. Hutter K (1983) Theoretical glaciology. Reidel, Dordrecht

    Book  Google Scholar 

  9. Fowler A (2011) Mathematical geoscience. Springer-Verlag, London

    Book  Google Scholar 

  10. Jouvet G, Bueler E (2012) Steady, shallow ice sheets as obstacle problems: well-posedness and finite element approximation. SIAM J Appl Math 72:1292–1314

    Article  Google Scholar 

  11. Hindmarsh RCA, Payne AJ (1996) Time-step limits for stable solutions of the ice-sheet equation. Ann Glaciol 23:74–85

    Article  Google Scholar 

  12. Weis M, Greve R, Hutter K (1999) Theory of shallow ice shelves. Continuum Mech Thermodyn 11:15–50

    Article  Google Scholar 

  13. Morland LW (1987) Unconfined ice-shelf flow. In: van der Veen CJ, Oerlemans J (eds) Dynamics of the West Antarctic ice sheet. Reidel, Dordrecht, pp 99–116

    Chapter  Google Scholar 

  14. MacAyeal DR (1989) Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J Geophys Res 94:4071–4087

    Article  Google Scholar 

  15. Schoof C (2006) A variational approach to ice stream flow. J Fluid Mech 556:227–251

    Article  Google Scholar 

  16. Johnsen SJ, Dahl-Jensen D, Dansgaard W, Gundestrup N (1995) Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus 47B:624–629

    Article  Google Scholar 

  17. Aschwanden A, Bueler E, Khroulev C, Blatter H (2012) An enthalpy formulation for glaciers and ice sheets. J Glaciol 58:441–457

    Article  Google Scholar 

  18. Greve R (1997) A continuum-mechanical formulation for shallow polythermal ice sheets. Phil Trans R Soc Lond A 355:921–974

    Article  Google Scholar 

  19. Hulbe CL, MacAyeal DR (1999) A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic Ice Sheet. J Geophys Res 104:25349–25366

    Article  Google Scholar 

  20. Ritz C, Rommelaere V, Dumas C (2001) Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostok region. J Geophys Res 106:31943–31964

    Article  Google Scholar 

  21. Bueler E, Brown J (2009) Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model. J Geophys Res 114:F03008

    Google Scholar 

  22. Goldberg D (2011) A variationally derived, depth-integrated approximation to a higher-order glaciological flow model. J Glaciol 57:157–170

    Article  Google Scholar 

  23. Pollard D, DeConto RM (2007) A coupled ice-sheet/ice-shelf/sediment model applied to a marine-margin flowline: forced and unforced variations. In: Hambrey MJ, Christoffersen P, Glasser NF, Hubbard B (eds) Glacial sedimentary processes and products, Special Publication number 39 of the International Association of Sedimentologists, Blackwell, Oxford, pp 37–52

    Google Scholar 

  24. Winkelmann R, Martin MA, Haseloff M, Albrecht T, Bueler E, Khroulev C, Levermann A (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) part 1: model description. The Cryosphere 5:715–726

    Article  Google Scholar 

  25. Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J Glaciol 41:333–344

    Article  Google Scholar 

  26. Pattyn F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J Geophys Res 108(B8):2382

    Article  Google Scholar 

  27. Schoof C, Hindmarsh RCA (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Quart J Mech Appl Math 63:73–114

    Article  Google Scholar 

  28. Pattyn F and 20 others (2008) Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). The Cryosphere 2:95–108

    Google Scholar 

  29. Balise M, Raymond C (1985) Transfer of basal sliding variations to the surface of a linearly-viscous glacier. J Glaciol 31:308–318

    Article  Google Scholar 

  30. Goldberg D, Holland DM, Schoof C (2009) Grounding line movement and ice shelf buttressing in marine ice sheets. J Geophys Res 114:F04026

    Google Scholar 

  31. Schoof C (2007) Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J Fluid Mech 573:27–55

    Google Scholar 

  32. Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Springer, Berlin

    Book  Google Scholar 

  33. van der Veen CJ (2013) Fundamentals of glacier dynamics, 2nd edn. CRC Press, Rotterdam

    Book  Google Scholar 

  34. Halfar P (1981) On the dynamics of the ice sheets. J Geophys Res 86:11065–11072

    Article  Google Scholar 

  35. Halfar P (1983) On the dynamics of the ice sheets 2. J Geophys Res 88:6043–6051

    Article  Google Scholar 

  36. Bueler E, Lingle CS, Kallen-Brown JA, Covey DN, Bowman LN (2005) Exact solutions and numerical verification for isothermal ice sheets. J Glaciol 51:291–306

    Article  Google Scholar 

  37. Bodvardsson G (1955) On the flow of ice-sheets and glaciers. Jökull 5:1–8

    Google Scholar 

  38. Bueler E (2014) An exact solution for a steady, flowline marine ice sheet. J Glaciol 60:1117–1125

    Article  Google Scholar 

  39. van der Veen CJ (1983) A note on the equilibrium profile of a free floating ice shelf. IMAU Report V83-15. University of Utrecht, Utrecht

    Google Scholar 

  40. Roache P (1998) Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque

    Google Scholar 

  41. Bueler E, Brown J, Lingle C (2007) Exact solutions to the thermomechanically coupled shallow ice approximation: effective tools for verification. J Glaciol 53:499–516

    Google Scholar 

  42. Glowinski R, Rappaz J (2003) Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. Math Model Numer Anal 37:175–186

    Article  Google Scholar 

  43. Jouvet G, Rappaz J (2011) Analysis and finite element approximation of a nonlinear stationary Stokes problem arising in glaciology. Adv Numer Anal 2011:164581

    Google Scholar 

  44. Sargent A, Fastook JL (2010) Manufactured analytical solutions for isothermal full-Stokes ice sheet models. The Cryosphere 4:285–311

    Article  Google Scholar 

  45. Morton KW, Mayers DF (2005) Numerical solutions of partial differential equations: an introduction, 2nd edn. C.U.P., Cambridge

    Book  Google Scholar 

  46. LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM, Philadelphia

    Book  Google Scholar 

  47. Braess D (2007) Finite elements: theory, fast solvers, and applications in solid mechanics, 3rd edn. C.U.P., Cambridge

    Book  Google Scholar 

  48. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. C.U.P., Cambridge

    Google Scholar 

  49. Trefethen LN (2000) Spectral methods in MATLAB. SIAM, Philadelphia

    Book  Google Scholar 

  50. Kelley CT (1987) Solving nonlinear equations with Newton’s method. SIAM, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Bueler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueler, E. (2021). Numerical Modelling of Ice Sheets, Streams, and Shelves. In: Fowler, A., Ng, F. (eds) Glaciers and Ice Sheets in the Climate System. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-42584-5_8

Download citation

Publish with us

Policies and ethics