Skip to main content

Dealing with Lethal Yellowing and Related Diseases in Coconut

  • Chapter
  • First Online:
Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’

Abstract

The coconut is a palm of economic and social importance; it is cultivated in 90 countries around the world and the markets of some of its products have been growing exponentially, representing a very promising future for the coconut cultivation and industry. Unfortunately, this is threatened by decreased fruit production due to ageing palms and lethal yellowing (LY) and related phytoplasma diseases (LYDs) that have been devastating coconut palms, particularly in countries of Latin America and the Caribbean (LAC), and Africa, although such diseases are also present in countries in Asia and Oceania. Much research has been carried out to understand LY and LYDs, and associated phytoplasmas have been identified. There are about 16 different strains within nine 16Sr phytoplasma groups. The more diverse group so far is the 16SrIV group, present in countries in the Americas, but also reported in Asia and Oceania. A search of vectors has resulted in one confirmed case in the Americas, a leafhopper (Haplaxius crudus Van Duzee, 1907), and other candidates have been identified but yet to be confirmed. Fifty palm species (including coconut) and 14 non-palm species have been reported as phytoplasma hosts. Screening for resistance has identified resistant germplasm in the Americas which has been used for replanting programs, and similar efforts are being conducted in other parts of the world. Methods for detection and diagnosis have been developed using PCR techniques. Micropropagation has been developed for massive propagation of the selected coconut germplasm. Management practices based on the above are currently being applied. However, even with all the progress achieved, there is still a lot to be done in order to move forward in how to deal more effectively with LY and LYDs. For this purpose, it is very important that research is carried out based on a global strategy, working worldwide in an organized and coordinated fashion, in collaboration with organizations such as ICC and COGENT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Khazindar M (2014) Detection and molecular identification of aster yellows Phytoplasma in date palm in Egypt. Phytopathology 162:621–625

    Google Scholar 

  • Al-Awadhi H, Hanif A, Suleman P et al (2002) Molecular and microscopical detection of phytoplasma associated with yellowing disease of date palm Phoenix dactylifera L. in Kuwait. Kuwait J Sci Eng 29:87–109

    CAS  Google Scholar 

  • Alhudaib K, Arocha Y, Wilson M et al (2007) Identification and molecular characterization of a phytoplasma associated with Al-wijam disease of date palm in Saudi Arabia. Arab J Plant Prot 25:116–122

    Google Scholar 

  • Álvarez E, Mejía JF, Contaldo N et al (2014) ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia. Plant Dis 98:311–318

    PubMed  Google Scholar 

  • Ammar MI, Amer MA, Rashed MF (2005) Detection of Phytoplasma associated with yellow streak disease of date palms (Phoenix dactylifera L.) in Egypt. Egypt J Virol 2:74–86

    Google Scholar 

  • Arocha-Rosete Y, Diallo HA, Konan Konan JL et al (2016) Detection and identification of the coconut lethal yellowing phytoplasma in weeds growing in coconut farms in Côte d’Ivoire. Can J Plant Pathol 38:164–173

    Google Scholar 

  • Ashburner GR, Cordova I, Oropeza C et al (1996) First report of coconut lethal yellowing in Honduras. Plant Dis 80(8):960

    Google Scholar 

  • Bahder BW, Helmick EE, Harrison N (2017) Detecting and differentiating phytoplasmas belonging to subgroups 16SrIV-A and 16SrIV-D associated with lethal declines of palms in Florida using qPCR and high-resolution melt analysis (HRMA). Plant Dis 101(8):1449–1454

    CAS  PubMed  Google Scholar 

  • Bahder BW, Helmick EE, Chakrabarti S et al (2018) Disease progression of a lethal decline caused by the 16SrIV-D phytoplasma in Florida palms. Plant Pathol 67:1821–1828

    CAS  Google Scholar 

  • Baudouin L, Lebrun P (2002) The development of a microsatellite kit and dedicated software for use with coconuts. International Plant Genetic Resources Institute (IPGRI), Rome. Burotrop Bull 17:16–20

    Google Scholar 

  • Baudouin L, Lebrun P (2009) Coconut (Cocos nucifera L.) DNA studies support the hypothesis of an ancient Austronesian migration from Southeast Asia to America. Genet Resour Crop Evol 56(2):257–262

    Google Scholar 

  • Baudouin L, Lebrun P, Berger A et al (2008) The Panama Tall and the Maypan hybrid coconut in Jamaica: did genetic contamination cause a loss of resistance to Lethal Yellowing? Euphytica 161(3):353–360

    Google Scholar 

  • Bila J, Högberg N, Mondjana A et al (2015) African fan palm (Borassus aethiopum) and oil palm (Elaeis guineensis) are alternate hosts of coconut lethal yellowing phytoplasma in Mozambique. Afr J Biotechnol 14:3359–3367

    CAS  Google Scholar 

  • Bila J, Högberg N, Mondjana A et al (2017) First report of ‘Candidatus Phytoplasma palmicola’ detection in the planthopper Distrombus mkurangai in Mozambique. B Insectol 70:45–48

    Google Scholar 

  • Bourdeix R (2019) A world without coconut water? The world’s trendiest nut is under threat of species collapse. https://scroll.in/article/print/822758

  • Bressan A, Purcell AH (2005) Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Dis 89:1121–1124

    CAS  PubMed  Google Scholar 

  • Broschat TK, Harrison NA, Donselman H (2002) Losses to lethal yellowing cast doubt on coconut cultivar resistance. Palms 46(4):185–189

    Google Scholar 

  • Brown SE, McLaughlin WA (2011) Identification of lethal yellowing group (16SrIV) of phytoplasmas in the weeds Stachytarphetaja maicensis, Macroptilium lathyroides and Cleome rutidosperma in Jamaica. Phytopathogenic Mollicutes 1:27–34

    Google Scholar 

  • Brown SE, Been BO, McLaughlin WA (2006) Detection and variability of the lethal yellowing group (16Sr IV) phytoplasmas in the Cedusa sp. (Hemiptera: Auchenorrhyncha: Derbidae) in Jamaica. Ann Appl Biol 149:53–62

    CAS  Google Scholar 

  • Brown SE, Been BO, McLaughlin WA (2008) First report of the presence of the lethal yellowing group (16SrIV) of phytoplasmas in the weeds Emilia fosbergii and Synedrella nodiflora in Jamaica. Ann Appl Biol 57(4):770–770

    Google Scholar 

  • COGENT (2017) A Global Strategy for the Conservation and Use of Coconut Genetic Resources, 2018–2028. (R. Bourdeix and A. Prades, compilers). Bioversity International, Montpellier, France, p 239

    Google Scholar 

  • Contaldo N, Satta E, Zambon Y et al (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. J Microbiol Meth 127:105–110

    CAS  Google Scholar 

  • Córdova I, Oropeza C, Almeyda H et al (2000) First report of a phytoplasma-associated leaf-yellowing syndrome of palma jipi plants in southern México. Plant Dis 84(7):807–807

    PubMed  Google Scholar 

  • Córdova I, Jones P, Harrison NA, Oropeza C (2003) In situ detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Mol Plant Pathol 4(2):99–108

    PubMed  Google Scholar 

  • Córdova I, Oropeza C, Puch-Hau C et al (2014) A real-time PCR assay for detection of coconut lethal yellowing phytoplasmas of group 16SrIV subgroups A, D and E found in the Americas. J Plant Pathol 96:343–352

    Google Scholar 

  • Córdova I, Oropeza C, Harrison N et al (2019) Simultaneous detection of coconut lethal yellowing phytoplasmas (group 16SrIV) by real-time PCR assays using 16Sr-and GroEL-based TaqMan probes. J Plant Pathol 101:609–619

    Google Scholar 

  • Córdova-Lara I, Mota NL, Puch HC et al (2017) Detection and identification of lethal yellowing phytoplasma 16SrIV-A and D associated with Adonidia merrillii palms in Mexico. Australas Plant Path 46:389–396

    Google Scholar 

  • Cronje P, Dabek AJ, Jones P et al (2000) First report of a phytoplasma associated with a disease of date palms in North Africa. Plant Pathol 49(6)

    Google Scholar 

  • Dery SK, Philippe R (1997) Preliminary study on the epidemiology of Cape St Paul wilt disease of coconut in Ghana. In: Proceedings of an International workshop on lethal yellowing-like diseases of coconut (eds) Eden-Green SJ. Ofori F, Natural Resources Institute, Chatham, United Kingdom, pp 255–260

    Google Scholar 

  • Dery SK, Philippe R, Baudouin L et al (2008) Genetic diversity among coconut varieties for susceptibility to Cape St Paul Wilt disease. Euphytica 164:1–11

    CAS  Google Scholar 

  • Dollet M, Macome F, Vaz A et al (2011) Phytoplasmas identical to coconut lethal yellowing phytoplasmas from Zambesia (Mozambique) found in a pentatomide bug in Cabo Delgado province. B Insectol 64:S139–S140

    Google Scholar 

  • Escamilla JA, Oropeza C, Harrison N et al (1994) Evolución de sondas moleculares de ADN para el estudio de organismos to micoplasma causantes del amarillamiento letal. Reporte de Proyecto CONACYT, México

    Google Scholar 

  • Góngora-Canul C, Escamilla-Bencomo J, Pérez-Hernández O et al (2004) Gradientes de diseminación del amarillamiento letal en cocotero (Cocos nucifera L.) en Sisal Yucatán, México. Revista Mexicana de Fitopatología 22:370–376

    Google Scholar 

  • Gurr GM, Johnson AC, Ash GJ et al (2016) Coconut lethal yellowing diseases: a phytoplasma threat to palms of global economic and social significance. Fronti Plant Sci 7:1521

    Google Scholar 

  • Harrison NA, Oropeza C (2008) Coconut lethal yellowing. In: Characterization, Diagnosis and Management of Phytoplasmas (eds) Harrison NA, Rao GP. Marcone C. Studium Press. Houston, USA, pp 219–248

    Google Scholar 

  • Harrison NA, Richardson P, Jones P et al (1994) Comparative investigation of MLO’s associated with Caribbean and African coconut lethal decline diseases by DNA Hybridization and PCR Assays. Plant Dis 78(5):507–511

    CAS  Google Scholar 

  • Harrison NA, Córdova I, Richardson P et al (1999) Detection and diagnosis of lethal yellowing. In: Current Advances in Coconut Biotechnology (eds)Oropeza C, Verdeil JL, Ashburner GR, Cardeña R. Santamaria JM. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 183–196

    Google Scholar 

  • Harrison NA, Myrie W, Jones P et al (2002a) 16S rRNA interoperon sequence heterogeneity distinguishes strain populations of palm lethal yellowing phytoplasma in the Caribbean region. Ann Appl Biol 141(2):183–193

    CAS  Google Scholar 

  • Harrison NA, Womack M, Carpio ML (2002b) Detection and characterization of a lethal yellowing (16SrIV) group phytoplasma in Canary Island date palms affected by lethal decline in Texas. Plant Dis 86(6):676–681

    CAS  PubMed  Google Scholar 

  • Harrison NA, Narváez M, Almeyda H et al (2002c) First report of group 16SrIV phytoplasmas infecting coconut palms with leaf yellowing symptoms on the pacific coast of México. New Dis Rep 5:1–3

    Google Scholar 

  • Harrison NA, Helmick EE, Elliott ML (2008) Lethal yellowing-type diseases of palms associated with phytoplasmas newly identified in Florida, USA. Ann Appl Biol 153:85–94

    CAS  Google Scholar 

  • Harrison NA, Helmick EE, Elliott ML (2009) First report of a phytoplasma-associated lethal decline of Sabal palmetto in Florida, USA. Plant Pathol 58(4):792

    Google Scholar 

  • Harrison NA, Davis RE, Oropeza C et al (2014) ‘Candidatus Phytoplasma palmicola’, a novel taxon associated with a lethal yellowing-type disease (LYD) of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Micr 64(6):1890–1899

    CAS  Google Scholar 

  • Hodgetts J, Boonham N, Mumford R et al (2009) Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group specific detection of phytoplasmas. App Environ Microbiol 75:2945–2950

    CAS  Google Scholar 

  • Howard FW (1980) Population densities of Myndus crudus Van Duzee (Homoptera: Cixiidae) in relation to coconut lethal yellowing distribution in Florida. Principes 24(4):174–178

    Google Scholar 

  • Howard FW (1990) Evaluation of grasses for cultural control of Myndus crudus, a vector of lethal yellowing of palms. Entomol Exp Appl 56(2):131–137

    Google Scholar 

  • Howard FW (1995) Lethal yellowing vector studies. I. Methods of experimental transmission. In: Lethal Yellowing Research and Practical Aspects (eds) Oropeza C, Howard FW. Ashburner GR. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 43–57

    Google Scholar 

  • Howard FW, McCoy RE (1980) Reduction in spread in mycoplasma like organism associated lethal decline of the palm Veitchia merrillii by the use of insecticides. J Econ Entomol 73(2):268–270

    CAS  Google Scholar 

  • Howard FW, Norris RC, Thomas DL (1983) Evidence of transmission of palm lethal yellowing agent by a planthopper, Myndus crudus (Homoptera, Cixiidae). Trop Agric 60(3):168–171

    Google Scholar 

  • Islas-Flores I, Santamaria JM, Cordova I et al (1999) Biochemical changes in roots of coconut palms (Cocos nucifera L.) affected by lethal yellowing. J Plant Physiol 155(1):48–53

    CAS  Google Scholar 

  • Jeyaprakash A, Sutton BD, Halbert SE et al (2011) First report of a 16SrIV-D phytoplasma associated with texas phoenix palm decline on pigmy date palm (Phoenix roebelenii) in florida. Plant Dis 95(11):1475–1475

    Google Scholar 

  • Kelly PL, Reeder R, Kokoa P et al (2011) First report of a phytoplasma identified in coconut palms (Cocos nucifera) with lethal yellowing-like symptoms in Papua New Guinea. New Dis Rep 23:9–9

    Google Scholar 

  • Kra KD, Toualy YMN, Kouamé AC et al (2017) First report of a phytoplasma affecting cassava orchards in Côte d'Ivoire. New Dis Rep 35:21–21

    Google Scholar 

  • Kramer JP (1979) Taxonomic study of the planthopper genus Myndus in the Americas (Homoptera: Fulgoroidea: Cixiidae). T Am Entomol Soc 105:301–389

    Google Scholar 

  • Kumara ADNT, Perera L, Meegahakumbura MK et al (2015) Identification of putative vectors of weligama coconut leaf wilt disease in Sri Lanka. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 137–146

    Google Scholar 

  • Kwadjo KF, Beugré NI, Dietrich CH et al (2018) Identification of Nedotepa curta Dmitriev as a potential vector of the Côte d’Ivoire lethal yellowing phytoplasma in coconut palms sole or in mixed infection with a ‘Candidatus Phytoplasma asteris’-related strain. Crop Prot 110:48–56

    Google Scholar 

  • Lawton KA, Friedrich L, Hunt M et al (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    CAS  PubMed  Google Scholar 

  • Lebrun P, Baudouin L (1999) Studies of coconut genetic relations using microsatellite markers. 1st international workshop and laboratory course on the application of Biotechnology to Plant Breeding and Crop Protection. Organized by Max-Planck-Institut fuer Zuechtungsforschungs (MPIZ, Colonia, Germany) and Centro de Investigación Científica de Yucatán (CICY, Mérida, México). CICY, Mérida, November 21 – December 3

    Google Scholar 

  • Lebrun P, Baudouin L, Myrie W et al (2008) Recent lethal yellowing outbreak: why is the Malayan yellow dwarf coconut no longer resistant in Jamaica? Tree Genet Genomes 4(1):125–131

    Google Scholar 

  • Llauger R, Becker D, Cueto J et al (2002) Detection and molecular characterization of phytoplasma associated with lethal yellowing disease of coconut palms in Cuba. J Phytopathol 150(7):390–395

    CAS  Google Scholar 

  • Lu H, You M, Wilson BAL et al (2016) Determining putative vectors of the Bogia Coconut Syndrome phytoplasma using loop-mediated isothermal amplification of single insect feeding media. Sci Rep 6:35801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manimekalai R, Soumya VP, Nair S et al (2014) Molecular characterization identifies 16SrXI-B group Phytoplasma (‘Candidatus Phytoplasma oryzae’-related strain) associated with root wilt disease of coconut in India. Sci Hort 165:288–294

    CAS  Google Scholar 

  • Martínez RT, Narváez M, Fabre S et al (2008) Coconut lethal yellowing on the southern coast of the Dominican Republic is associated with a new 16SrIV group phytoplasma. Plant Pathol 57(2):366

    Google Scholar 

  • Mathen K, Rajan P, Radhakrishnan Nair C et al (1990) Transmission of root (wilt) disease to coconut seedlings through Stephanitis typica (Distant) (Heteroptera: Tingidae). Trop Agric 67(1):69–73

    Google Scholar 

  • McCoy RE (1982) Antibiotic treatment for control of tree diseases associated with mycoplasma-like organisms. Rev Infect Dis 4:S157–S161

    PubMed  Google Scholar 

  • McCoy RE, Howard FW, Tsai JH et al (1983) Lethal yellowing of palms, Agricultural Experiment Stations Bulletin 834. University of Florida, Gainesville

    Google Scholar 

  • Mehdi A, Baranwal VK, Babu MK et al (2012) Sequence analysis of 16S rRNA and secA genes confirms the association of 16SrI-B subgroup phytoplasma with oil palm (Elaeis guineensis Jacq.) stunting disease in India. J Phytopathol 160:6–12

    CAS  Google Scholar 

  • Mejía F, Palmieri M, Oropeza C et al (2004). First report of coconut lethal yellowing disease in Guatemala. Plant Pathol 53:80

    Google Scholar 

  • Mpunami A, Tymon A, Jones P et al (2000) Identification of potential vectors of the coconut lethal disease phytoplasma. Plant Pathol 49(3):355–361

    Google Scholar 

  • Myrie WA, Paulraj L, Dollet M et al (2006) First Report of coconut lethal yellowing disease in guatemala. Plant Pathol. Plant Dis 90(6):834–834

    Google Scholar 

  • Myrie WA, Douglas L, Harrison NA et al (2012) First report of lethal yellowing disease associated with subgroup 16SrIV, a Phytoplasma on St. Kitts in the Lesser Antilles. New Dis Rep 26:25–25

    Google Scholar 

  • Myrie W, Harrison N, Douglas L et al (2014) Identification of lethal yellowing disease of palms associated with infection by subgroup 16SrIV-A phytoplasmas in Antigua, West Indies. New Dis Rep 29:12–12

    Google Scholar 

  • Narvaez M, Córdova I, Orellana R et al (2006) First report of a lethal yellowing Phytoplasma in Thrinax radiata and Coccothrinax readii palms in the Yucatan peninsula of Mexico. Plant Pathol 55(2):292–292

    Google Scholar 

  • Narvaez M, Córdova-Lara I, Reyes-Martínez C et al (2016) Occurrence of 16SrIV subgroup-A phytoplasmas in Roystonea regia and Acrocomia mexicana palms with lethal yellowing-like syndromes in Yucatán, Mexico. J Phytopathol 164(11–12):1111–1115

    Google Scholar 

  • Narvaez M, Ortíz E, Silverio C et al (2017) Changes observed in Pritchardia pacifica palms affected by a lethal yellowing-type disease in Mexico. Afr J Biotechnol 16(51):2331–2340

    Google Scholar 

  • Narvaez M, Vázquez-Euán R, Harrison NA et al (2018) Presence of 16SrIV phytoplasmas of subgroups A, D and E in planthopper Haplaxius crudus Van Duzee insects in Yucatán, Mexico. 3Biotech 8(1):61

    Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA et al (2009) First report of a 16SrXIV, ‘Candidatus Phytoplasma cynodontis’ group phytoplasma associated with coconut yellow decline in Malaysia. Plant Pathol 58(2):389–389

    Google Scholar 

  • Nejat N, Vadamalai G, Davis RE et al (2012) ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int J Syst Evol Microbiol 63(2):540–548

    PubMed  Google Scholar 

  • Nic-Matos JG, Narvaez M, Peraza-Echeverría E et al (2017) Molecular cloning of two novel NPR1 homologue genes in coconut palm and analysis of their expression in response to the plant defense hormone salicylic acid. G Genome 39(9):1007–1019

    CAS  Google Scholar 

  • Ntushello K, Harrison NA, Elliott ML (2013) Palm phytoplasmas in the Caribbean basin. Palms 57(2):93–100

    Google Scholar 

  • Omar AF, Alsohim A, Rehan MR et al (2018) 16SrII phytoplasma associated with date palm and Mexican palm fan in Saudi Arabia. J Australas Plant Pathol Soc 13(1):–39

    Google Scholar 

  • Oropeza C, Narváez M, Echegoyén-Ramos PE et al (2010) Plan de contingencia ante un brote de amarillamiento letal del cocotero (ALC) en un país de la región del OIRSA. Organismo Internacional Regional de Sanidad Agropecuaria – OIRSA. San Salvador, El Salvador, p 149

    Google Scholar 

  • Oropeza C, Córdova I, Chumba A et al (2011) Phytoplasma distribution in coconut palms affected by lethal yellowing disease. Ann Appl Biol 159(1):109–117

    Google Scholar 

  • Oropeza C, Sáenz L, Chan JL et al (2016) Coconut micropropagation in Mexico using plumule and floral explants. Cord 32:21–26

    Google Scholar 

  • Oropeza C, Córdova I, Puch-Hau C et al (2017) Detection of lethal yellowing phytoplasma in coconut plantlets obtained through in vitro germination of zygotic embryos from the seeds of infected palms. Ann Appl Biol 171(1):28–36

    CAS  Google Scholar 

  • Perera L, Meegahakumbura MK, Wijesekara HRT et al (2012) A Phytoplasma is associated with the Weligama coconut leaf wilt disease in Sri Lanka. J Plant Pathol 94(1):205–209

    Google Scholar 

  • Pérez-Hernández O, Góngora-Canul C, Medina-Lara MF et al (2004) Patrón espacio-temporal del amarillamiento letal en cocotero (Cocos nucifera L.) en Yucatán, México. Revista Mexicana de Fitopatología 22(2):231–238

    Google Scholar 

  • Philippe R, Simon R, Deschamp S et al (2009) Study on the transmission of lethal yellowing in Ghana. OCL 16(2):102–106

    Google Scholar 

  • Plavsic-Banjac B, Hunt P, Maramorosch K (1972) Mycoplasmalike bodies associated with lethal yellowing disease of coconut palms. Phytopathology 62(2):298–299

    Google Scholar 

  • Prades A, Salum UN, Pioch D (2016) New era for the coconut sector. What prospects for research? OCL 23(6):D607

    Google Scholar 

  • Puch-Hau C, Oropeza C, Peraza-Echeverria C et al (2015) Molecular cloning and characterization of disease-resistance gene candidates of the nucleotide binding site (NBS) type from Cocos nucifera L. Physiol Mol Plant P 89:87–96

    CAS  Google Scholar 

  • Rajan P (2011) Transmission of coconut root (wilt) disease through plant hopper, Proutista moesta Westwood (Homoptera: Derbidae). Pest Manag Horticult Ecosyst 17:1–5

    Google Scholar 

  • Ramaswamy M, Nair S, Soumya VP et al (2013) Phylogenetic analysis identifies a ‘Candidatus Phytoplasma oryzae’-related strain associated with yellow leaf disease of areca palm (Areca catechu L.) in India. Int J Syst Evol Micr 63(4):1376–1382

    Google Scholar 

  • Ramos-Hernández E, Magaña-Alejandro MA, Ortiz-García CF et al (2018) The coconut pathosystem: weed hosts of nymphs of the American palm Cixiid Haplaxius crudus (Hemiptera: Fulgoroidea). J Nat Hist 52(5–6):255–268

    Google Scholar 

  • Reinert JA (1980) Phenology and Density of Haplaxius crudus (Homoptera: Cixiidae). On Three Southern Turfgrasses. Environ Entomol 9:13–15

    Google Scholar 

  • Roca MM, Castillo MG, Harrison NA et al (2006) First report of a 16SrIV group phytoplasma associated with declining coyol palms in Honduras. Plant Dis 90(4):526–526

    CAS  PubMed  Google Scholar 

  • Rodriguez JV, Vitoreli AM, Ramirez AL (2010) Association of a phytoplasma with dieback in palms in Puerto Rico confirmed by nested-PCR assays. Phytopathology 100(6):S110–S110

    Google Scholar 

  • Schuiling M (1976) A survey of insect populations on Cocos nucifera. Principes 20(2):67

    Google Scholar 

  • Singh R (2014) Texas Phoenix Palm Decline Confirmed in Louisiana. NPDN News 9:1–2

    Google Scholar 

  • Sumi K, Madhupriya KS et al (2014) Molecular confirmation and interrelationship of phytoplasmas associated with diseases of palms in South India. Phytopathogenic Mollicutes 4(2):41–52

    Google Scholar 

  • Thomas DL, Donselman HM (1979) Mycoplasma-like bodies and phloem degeneration associated with declining Pandanus in Florida. Plant Dis Report 63(11):911–916

    Google Scholar 

  • Tomlinson JA, Boonham N, Dickinson M (2010) Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol 59(3):465–471

    CAS  Google Scholar 

  • Triplehorn CA, Johnson NF (2005) Borror and DeLong’s introduction to the study of insects, 7th edn. Thomson, Brooks/Cole, Pacific Grove, p 864

    Google Scholar 

  • Vázquez-Euán R, Harrison NA, Narváez M et al (2011) Occurrence of a 16SrIV group phytoplasma not previously associated with palm species in Yucatan, Mexico. Plant Dis 95(3):256–262

    PubMed  Google Scholar 

  • Warokka WA, Jones P, Dickinson M (2006) Detection of phytoplasmas associated with Kalimanthan wilt disease of coconut by polymerase chain reaction. J Penelit Tanam Ind 12:154–160

    Google Scholar 

  • Yankey EN, Bila J, Arocha Rosete Y et al (2018) Phytoplasma diseases of Palms. In: Rao GP, Bertaccini A, Fiore N, Liefting LW (eds) Phytoplasmas: plant pathogenic bacteria – I. Characterisation and epidemiology of phytoplasma – associated diseases. Springer, Singapore, pp 267–285

    Google Scholar 

  • Zamharir MG, Eslahi MR (2019) Molecular study of two distinct phytoplasma species associated with streak yellows of date palm in Iran. J Phytopathol 167(1):19–25

    Google Scholar 

  • Zhao Y, Wei W, Lee IM et al (2009) Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59(Pt 10):2582–2593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zizumbo-Villarreal D (1996) History of coconut in Mexico. Genet Resour Crop Evol 43(6):505–515

    Google Scholar 

  • Zizumbo-Villarreal D, Colunga-García MP, Fernández-Barrera M et al (2008) Mortality of Mexican coconut germplasm due to lethal yellowing. Bulletin de Ressources Phytogénétiques, p 23

    Google Scholar 

  • Zou Y, Mason MG, Wang Y et al (2017) Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol 15(11):e2003916

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Oropeza-Salín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oropeza-Salín, C. et al. (2020). Dealing with Lethal Yellowing and Related Diseases in Coconut. In: Adkins, S., Foale, M., Bourdeix, R., Nguyen, Q., Biddle, J. (eds) Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’. Springer, Cham. https://doi.org/10.1007/978-3-030-44988-9_9

Download citation

Publish with us

Policies and ethics