Skip to main content

A Toolbox of Structural Biology and Enzyme Kinetics Reveals the Case for ERK Docking Site Inhibition

  • Chapter
  • First Online:
Next Generation Kinase Inhibitors

Abstract

Extracellular signal–regulated kinase (ERK) is a mitogen-activated protein kinase (MAPK) that mediates cellular processes such as proliferation, differentiation, cell motility, and survival. Dysregulation of the ERK signaling pathway is believed to have a protumorigenic role in many cancers, and studies also implicate it in a variety of other proliferative diseases. Within the ERK signaling pathway, protein-protein interactions via enzyme-docking sites help generate signal specificity and direct ERK to subsequent binding partners or substrates. ERK possesses two known docking sites that are distinct from its catalytic site: the D- and F- recruitment sites (DRS and FRS). Over time, our group has characterized these sites through a combination of structural and kinetic studies, including computational and biochemical techniques, centering around a model ERK substrate EtsΔ138 (residues 1–138 of the transcription factor Ets-1). These studies are part of a growing effort to elucidate new insights into ERK signaling and to evaluate the role of each binding site in specific ERK interactions. Furthermore, the development of inhibitors that target these docking sites offers a way to impede both catalytic and noncatalytic functions of ERK, which may provide therapeutic benefit in disease states driven by ERK signaling. Here, we describe the features of the DRS and FRS of ERK, their roles in the phosphorylation of EtsΔ138, and the status, mechanisms, and implications of targeting these sites with inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Underlined amino acid codes denote basic (ψ) and hydrophobic (φA and φB) residues of the D-site sequence.

  2. 2.

    Underlined residues correspond to the F-site sequence FXFP

  3. 3.

    IC50 values are concentrations of an antagonist molecule that are required to observe a half-maximal inhibitory effect. These measurements are dependent on enzyme concentration, presence of competitive substrates, and duration of exposure to enzyme (if the inhibitors are time-dependent enzyme inactivators).

References

  1. Eblen, S. T. (2018). Extracellular-regulated kinases: Signaling from Ras to ERK substrates to control biological outcomes. Advances in Cancer Research, 138, 99–142.

    PubMed  PubMed Central  Google Scholar 

  2. Roskoski, R., Jr. (2019). Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacological Research, 142, 151–168.

    CAS  PubMed  Google Scholar 

  3. Santarpia, L., Lippman, S. M., & El-Naggar, A. K. (2012). Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 103–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chico, L. K., Van Eldik, L. J., & Watterson, D. M. (2009). Targeting protein kinases in central nervous system disorders. Nature Reviews Drug Discovery, 8(11), 892–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Muslin, A. J. (2008). MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clinical Science (London, England), 115(7), 203–218.

    CAS  Google Scholar 

  6. Gallo, S., et al. (2019). ERK: A key player in the pathophysiology of cardiac hypertrophy. International Journal of Molecular Sciences, 20(9), 2164.

    CAS  PubMed Central  Google Scholar 

  7. Tanti, J. F., & Jager, J. (2009). Cellular mechanisms of insulin resistance: Role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Current Opinion in Pharmacology, 9(6), 753–762.

    CAS  PubMed  Google Scholar 

  8. Omori, S., et al. (2006). Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J Am Soc Nephrol, 17(6), 1604–1614.

    CAS  PubMed  Google Scholar 

  9. Pelaia, G., et al. (2005). Mitogen-activated protein kinases and asthma. Journal of Cellular Physiology, 202(3), 642–653.

    CAS  PubMed  Google Scholar 

  10. Mercer, B. A., et al. (2004). Extracellular regulated kinase/mitogen activated protein kinase is up-regulated in pulmonary emphysema and mediates matrix metalloproteinase-1 induction by cigarette smoke. The Journal of Biological Chemistry, 279(17), 17690–17696.

    CAS  PubMed  Google Scholar 

  11. Boulton, T. G., & Cobb, M. H. (1991). Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regulation, 2(5), 357–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Busca, R., Pouyssegur, J., & Lenormand, P. (2016). ERK1 and ERK2 map kinases: Specific roles or functional redundancy? Frontiers in Cell and Development Biology, 4, 53.

    Google Scholar 

  13. Davis, R. J. (1993). The mitogen-activated protein kinase signal transduction pathway. The Journal of Biological Chemistry, 268(20), 14553–14556.

    CAS  PubMed  Google Scholar 

  14. Gonzalez, F. A., Raden, D. L., & Davis, R. J. (1991). Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. The Journal of Biological Chemistry, 266(33), 22159–22163.

    CAS  PubMed  Google Scholar 

  15. Turjanski, A. G., Hummer, G., & Gutkind, J. S. (2009). How mitogen-activated protein kinases recognize and phosphorylate their targets: A QM/MM study. Journal of the American Chemical Society, 131(17), 6141–6148.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Admiraal, S. J., & Herschlag, D. (1995). Mapping the transition state for ATP hydrolysis: Implications for enzymatic catalysis. Chemistry & Biology, 2(11), 729–739.

    CAS  Google Scholar 

  17. Adams, J. A. (2001). Kinetic and catalytic mechanisms of protein kinases. Chemical Reviews, 101(8), 2271–2290.

    CAS  PubMed  Google Scholar 

  18. Roskoski, R., Jr. (2012). ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacological Research, 66(2), 105–143.

    CAS  PubMed  Google Scholar 

  19. Robinson, M. J., et al. (1996). Mutation of position 52 in ERK2 creates a nonproductive binding mode for adenosine 5′-triphosphate. Biochemistry, 35(18), 5641–5646.

    CAS  PubMed  Google Scholar 

  20. Waas, W. F., & Dalby, K. N. (2003). Physiological concentrations of divalent magnesium ion activate the serine/threonine specific protein kinase ERK2. Biochemistry, 42(10), 2960–2970.

    CAS  PubMed  Google Scholar 

  21. Waas, W. F., et al. (2004). A kinetic approach towards understanding substrate interactions and the catalytic mechanism of the serine/threonine protein kinase ERK2: Identifying a potential regulatory role for divalent magnesium. Biochimica et Biophysica Acta, 1697(1-2), 81–87.

    CAS  PubMed  Google Scholar 

  22. Prowse, C. N., & Lew, J. (2001). Mechanism of activation of ERK2 by dual phosphorylation. The Journal of Biological Chemistry, 276(1), 99–103.

    CAS  PubMed  Google Scholar 

  23. Hoofnagle, A. N., et al. (2001). Changes in protein conformational mobility upon activation of extracellular regulated protein kinase-2 as detected by hydrogen exchange. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 956–961.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Modi, V., & Dunbrack, R. L., Jr. (2019). Defining a new nomenclature for the structures of active and inactive kinases. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6818–6827.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wilson, L. J., et al. (2018). New perspectives, opportunities, and challenges in exploring the human protein kinome. Cancer Research, 78(1), 15–29.

    CAS  PubMed  Google Scholar 

  26. Garai, A., et al. (2012). Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Science Signaling, 5(245), ra74.

    PubMed  PubMed Central  Google Scholar 

  27. Zeke, A., et al. (2015). Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Molecular Systems Biology, 11(11), 837.

    PubMed  PubMed Central  Google Scholar 

  28. Abramczyk, O., et al. (2007). Expanding the repertoire of an ERK2 recruitment site: Cysteine footprinting identifies the D-recruitment site as a mediator of Ets-1 binding. Biochemistry, 46(32), 9174–9186.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, S., et al. (2011). A model of a MAPK*substrate complex in an active conformation: A computational and experimental approach. PLoS One, 6(4), e18594.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jacobs, D., et al. (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes & Development, 13(2), 163–175.

    CAS  Google Scholar 

  31. Fantz, D. A., et al. (2001). Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. The Journal of Biological Chemistry, 276(29), 27256–27265.

    CAS  PubMed  Google Scholar 

  32. Martin, M. C., et al. (2008). The docking interaction of caspase-9 with ERK2 provides a mechanism for the selective inhibitory phosphorylation of caspase-9 at threonine 125. The Journal of Biological Chemistry, 283(7), 3854–3865.

    CAS  PubMed  Google Scholar 

  33. Burkhard, K. A., Chen, F., & Shapiro, P. (2011). Quantitative analysis of ERK2 interactions with substrate proteins: Roles for kinase docking domains and activity in determining binding affinity. The Journal of Biological Chemistry, 286(4), 2477–2485.

    CAS  PubMed  Google Scholar 

  34. Dimitri, C. A., et al. (2005). Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Current Biology, 15(14), 1319–1324.

    CAS  PubMed  Google Scholar 

  35. Tanoue, T., et al. (2000). A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nature Cell Biology, 2(2), 110–116.

    CAS  PubMed  Google Scholar 

  36. Piserchio, A., et al. (2012). Docking interactions of hematopoietic tyrosine phosphatase with MAP kinases ERK2 and p38alpha. Biochemistry, 51(41), 8047–8049.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bardwell, A. J., et al. (2001). A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. The Journal of Biological Chemistry, 276(13), 10374–10386.

    CAS  PubMed  Google Scholar 

  38. Callaway, K., et al. (2007). The anti-apoptotic protein PEA-15 is a tight binding inhibitor of ERK1 and ERK2, which blocks docking interactions at the D-recruitment site. Biochemistry, 46(32), 9187–9198.

    CAS  PubMed  Google Scholar 

  39. Callaway, K., Rainey, M. A., & Dalby, K. N. (2005). Quantifying ERK2-protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains. Biochimica et Biophysica Acta, 1754(1-2), 316–323.

    CAS  PubMed  Google Scholar 

  40. Mace, P. D., et al. (2013). Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Nature Communications, 4, 1681.

    PubMed  PubMed Central  Google Scholar 

  41. Formstecher, E., et al. (2001). PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Developmental Cell, 1(2), 239–250.

    CAS  PubMed  Google Scholar 

  42. Adachi, M., Fukuda, M., & Nishida, E. (2000). Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. The Journal of Cell Biology, 148(5), 849–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng, C. F., & Guan, K. L. (1994). Cytoplasmic localization of the mitogen-activated protein kinase activator MEK. The Journal of Biological Chemistry, 269(31), 19947–19952.

    CAS  PubMed  Google Scholar 

  44. Canagarajah, B. J., et al. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell, 90(5), 859–869.

    CAS  PubMed  Google Scholar 

  45. Zhang, F., et al. (1994). Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature, 367(6465), 704–711.

    CAS  PubMed  Google Scholar 

  46. Zhou, T., et al. (2006). Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure, 14(6), 1011–1019.

    CAS  PubMed  Google Scholar 

  47. Taylor, C. A. T., et al. (2019). Functional divergence caused by mutations in an energetic hotspot in ERK2. Proceedings of the National Academy of Sciences of the United States of America, 116(31), 15514–15523.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Galanis, A., Yang, S. H., & Sharrocks, A. D. (2001). Selective targeting of MAPKs to the ETS domain transcription factor SAP-1. The Journal of Biological Chemistry, 276(2), 965–973.

    CAS  PubMed  Google Scholar 

  49. Tzarum, N., et al. (2013). DEF pocket in p38alpha facilitates substrate selectivity and mediates autophosphorylation. The Journal of Biological Chemistry, 288(27), 19537–19547.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Elkins, J. M., et al. (2013). X-ray crystal structure of ERK5 (MAPK7) in complex with a specific inhibitor. Journal of Medicinal Chemistry, 56(11), 4413–4421.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, X., et al. (2016). A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nature Communications, 7, 10879.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, T., et al. (2004). Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Molecular Cell, 14(1), 43–55.

    CAS  PubMed  Google Scholar 

  53. Comess, K. M., et al. (2011). Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases. ACS Chemical Biology, 6(3), 234–244.

    CAS  PubMed  Google Scholar 

  54. Sheridan, D. L., et al. (2008). Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs. The Journal of Biological Chemistry, 283(28), 19511–19520.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Piserchio, A., et al. (2015). Structural and dynamic features of F-recruitment site driven substrate phosphorylation by ERK2. Scientific Reports, 5, 11127.

    PubMed  PubMed Central  Google Scholar 

  56. Piserchio, A., et al. (2017). Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2. Proceedings of the National Academy of Sciences of the United States of America, 114(31), E6287–E6296.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Callaway, K. A., et al. (2006). Properties and regulation of a transiently assembled ERK2.Ets-1 signaling complex. Biochemistry, 45(46), 13719–13733.

    CAS  PubMed  Google Scholar 

  58. McKay, M. M., Ritt, D. A., & Morrison, D. K. (2009). Signaling dynamics of the KSR1 scaffold complex. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11022–11027.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Waas, W. F., & Dalby, K. N. (2001). Purification of a model substrate for transcription factor phosphorylation by ERK2. Protein Expression and Purification, 23(1), 191–197.

    CAS  PubMed  Google Scholar 

  60. Waas, W. F., & Dalby, K. N. (2002). Transient protein-protein interactions and a random-ordered kinetic mechanism for the phosphorylation of a transcription factor by extracellular-regulated protein kinase 2. The Journal of Biological Chemistry, 277(15), 12532–12540.

    CAS  PubMed  Google Scholar 

  61. Cornish-Bowden, A. (2012). Fundamentals of enzyme kinetics (4th ed., Vol. xviii, 498p). Weinheim: Wiley-VCH.

    Google Scholar 

  62. Seidel, J. J., & Graves, B. J. (2002). An ERK2 docking site in the pointed domain distinguishes a subset of ETS transcription factors. Genes & Development, 16(1), 127–137.

    CAS  Google Scholar 

  63. Waas, W. F., et al. (2003). Two rate-limiting steps in the kinetic mechanism of the serine/threonine specific protein kinase ERK2: A case of fast phosphorylation followed by fast product release. Biochemistry, 42(42), 12273–12286.

    CAS  PubMed  Google Scholar 

  64. Callaway, K., et al. (2010). Phosphorylation of the transcription factor Ets-1 by ERK2: Rapid dissociation of ADP and phospho-Ets-1. Biochemistry, 49(17), 3619–3630.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rainey, M. A., et al. (2005). Proximity-induced catalysis by the protein kinase ERK2. Journal of the American Chemical Society, 127(30), 10494–10495.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Piserchio, A., et al. (2011). Solution NMR insights into docking interactions involving inactive ERK2. Biochemistry, 50(18), 3660–3672.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Piserchio, A., Dalby, K. N., & Ghose, R. (2012). Assignment of backbone resonances in a eukaryotic protein kinase—ERK2 as a representative example. Methods in Molecular Biology, 831, 359–368.

    CAS  PubMed  Google Scholar 

  68. Kummer, L., et al. (2012). Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proceedings of the National Academy of Sciences of the United States of America, 109(34), E2248–E2257.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mylona, A., et al. (2016). Opposing effects of Elk-1 multisite phosphorylation shape its response to ERK activation. Science, 354(6309), 233–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson, D. S., Weerapana, E., & Cravatt, B. F. (2010). Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Medicinal Chemistry, 2(6), 949–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Barf, T., & Kaptein, A. (2012). Irreversible protein kinase inhibitors: Balancing the benefits and risks. Journal of Medicinal Chemistry, 55(14), 6243–6262.

    CAS  PubMed  Google Scholar 

  72. Garuti, L., Roberti, M., & Bottegoni, G. (2011). Irreversible protein kinase inhibitors. Current Medicinal Chemistry, 18(20), 2981–2994.

    CAS  PubMed  Google Scholar 

  73. Schwanhausser, B., et al. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337–342.

    PubMed  Google Scholar 

  74. Singh, J., et al. (2011). The resurgence of covalent drugs. Nature Reviews Drug Discovery, 10(4), 307–317.

    CAS  PubMed  Google Scholar 

  75. Kwak, E. L., et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7665–7670.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kobayashi, S., et al. (2005). An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Research, 65(16), 7096–7101.

    CAS  PubMed  Google Scholar 

  77. Lake, D., Correa, S. A., & Muller, J. (2016). Negative feedback regulation of the ERK1/2 MAPK pathway. Cellular and Molecular Life Sciences, 73(23), 4397–4413.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson, G. L., et al. (2014). Molecular pathways: Adaptive kinome reprogramming in response to targeted inhibition of the BRAF-MEK-ERK pathway in cancer. Clinical Cancer Research, 20(10), 2516–2522.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Albeck, J. G., Mills, G. B., & Brugge, J. S. (2013). Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Molecular Cell, 49(2), 249–261.

    CAS  PubMed  Google Scholar 

  80. Copeland, R. A. (2000). Enzymes: A practical introduction to structure, mechanism, and data analysis (2nd ed., Vol. xvi, 397p). New York: J. Wiley.

    Google Scholar 

  81. Kitz, R., & Wilson, I. B. (1962). Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. The Journal of Biological Chemistry, 237, 3245–3249.

    CAS  PubMed  Google Scholar 

  82. Bardwell, L., et al. (1998). Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes & Development, 12(18), 2887–2898.

    CAS  Google Scholar 

  83. Camps, M., et al. (1998). Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science, 280(5367), 1262–1265.

    CAS  PubMed  Google Scholar 

  84. Hari, S. B., Merritt, E. A., & Maly, D. J. (2014). Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases. Chemistry & Biology, 21(5), 628–635.

    CAS  Google Scholar 

  85. Hu, S., et al. (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3), 610–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rodriguez, J., et al. (2010). ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. The Journal of Cell Biology, 191(5), 967–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cohen-Armon, M., et al. (2007). DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: A link to histone acetylation. Molecular Cell, 25(2), 297–308.

    CAS  PubMed  Google Scholar 

  88. Shapiro, P. S., et al. (1999). Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Molecular and Cellular Biology, 19(5), 3551–3560.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hancock, C. N., et al. (2005). Identification of novel extracellular signal-regulated kinase docking domain inhibitors. Journal of Medicinal Chemistry, 48(14), 4586–4595.

    CAS  PubMed  Google Scholar 

  90. Chen, F., et al. (2006). Characterization of ATP-independent ERK inhibitors identified through in silico analysis of the active ERK2 structure. Bioorganic & Medicinal Chemistry Letters, 16(24), 6281–6287.

    CAS  Google Scholar 

  91. Boston, S. R., et al. (2011). Characterization of ERK docking domain inhibitors that induce apoptosis by targeting Rsk-1 and caspase-9. BMC Cancer, 11, 7.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, Q., et al. (2009). Structure-activity relationship (SAR) studies of 3-(2-amino-ethyl)-5-(4-ethoxy-benzylidene)-thiazolidine-2,4-dione: Development of potential substrate-specific ERK1/2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 19(21), 6042–6046.

    CAS  Google Scholar 

  93. Jung, K. Y., et al. (2013). Structural modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that improve selectivity for inhibiting the proliferation of melanoma cells containing active ERK signaling. Organic & Biomolecular Chemistry, 11(22), 3706–3732.

    CAS  Google Scholar 

  94. Dai, B., et al. (2009). Extracellular signal-regulated kinase positively regulates the oncogenic activity of MCT-1 in diffuse large B-cell lymphoma. Cancer Research, 69(19), 7835–7843.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kinoshita, T., et al. (2016). Identification of allosteric ERK2 inhibitors through in silico biased screening and competitive binding assay. Bioorganic & Medicinal Chemistry Letters, 26(3), 955–958.

    CAS  Google Scholar 

  96. Sammons, R. M., et al. (2019). A novel class of common docking domain inhibitors that prevent ERK2 activation and substrate phosphorylation. ACS Chemical Biology, 14(6), 1183–1194.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kaoud, T. S., et al. (2019). Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo. Nature Communications, 10(1), 5232.

    PubMed  PubMed Central  Google Scholar 

  98. Stebbins, J. L., et al. (2008). Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16809–16813.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Samadani, R., et al. (2015). Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf. The Biochemical Journal, 467(3), 425–438.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller, C. J., Muftuoglu, Y., & Turk, B. E. (2017). A high throughput assay to identify substrate-selective inhibitors of the ERK protein kinases. Biochemical Pharmacology, 142, 39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, S., et al. (2011). Examining docking interactions on ERK2 with modular peptide substrates. Biochemistry, 50(44), 9500–9510.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Herrero, A., et al. (2015). Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes. Cancer Cell, 28(2), 170–182.

    CAS  PubMed  Google Scholar 

  103. Lidke, D. S., et al. (2010). ERK nuclear translocation is dimerization-independent but controlled by the rate of phosphorylation. The Journal of Biological Chemistry, 285(5), 3092–3102.

    CAS  PubMed  Google Scholar 

  104. Kaoud, T. S., et al. (2011). Activated ERK2 is a monomer in vitro with or without divalent cations and when complexed to the cytoplasmic scaffold PEA-15. Biochemistry, 50(21), 4568–4578.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Burack, W. R., & Shaw, A. S. (2005). Live cell imaging of ERK and MEK: Simple binding equilibrium explains the regulated nucleocytoplasmic distribution of ERK. The Journal of Biological Chemistry, 280(5), 3832–3837.

    CAS  PubMed  Google Scholar 

  106. Casar, B., Pinto, A., & Crespo, P. (2008). Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Molecular Cell, 31(5), 708–721.

    CAS  PubMed  Google Scholar 

  107. Francis, D. M., et al. (2011). Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase. Nature Chemical Biology, 7(12), 916–924.

    CAS  PubMed  Google Scholar 

  108. Glatz, G., et al. (2013). Structural mechanism for the specific assembly and activation of the extracellular signal regulated kinase 5 (ERK5) module. The Journal of Biological Chemistry, 288(12), 8596–8609.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Breen, M. E., & Soellner, M. B. (2015). Small molecule substrate phosphorylation site inhibitors of protein kinases: Approaches and challenges. ACS Chemical Biology, 10(1), 175–189.

    CAS  PubMed  Google Scholar 

  110. Knight, Z. A., & Shokat, K. M. (2005). Features of selective kinase inhibitors. Chemistry & Biology, 12(6), 621–637.

    CAS  Google Scholar 

  111. Liu, Q., et al. (2013). Developing irreversible inhibitors of the protein kinase cysteinome. Chemistry & Biology, 20(2), 146–159.

    Google Scholar 

  112. Ward, R. A., et al. (2015). Structure-guided design of highly selective and potent covalent inhibitors of ERK1/2. Journal of Medicinal Chemistry, 58(11), 4790–4801.

    CAS  PubMed  Google Scholar 

  113. Browne, C. M., et al. (2019). A Chemoproteomic strategy for direct and proteome-wide covalent inhibitor target-site identification. Journal of the American Chemical Society, 141(1), 191–203.

    CAS  PubMed  Google Scholar 

  114. Adler, V., et al. (2005). Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway. Biochemistry, 44(32), 10784–10795.

    CAS  PubMed  Google Scholar 

  115. Ritt, D. A., et al. (2016). Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Molecular Cell, 64(5), 875–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jokinen, E., & Koivunen, J. P. (2015). MEK and PI3K inhibition in solid tumors: Rationale and evidence to date. Therapeutic Advances in Medical Oncology, 7(3), 170–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Fallahi-Sichani, M., et al. (2015). Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Molecular Systems Biology, 11(3), 797.

    PubMed  Google Scholar 

  118. Miura, H., et al. (2018). Cell-to-cell heterogeneity in p38-mediated cross-inhibition of JNK causes stochastic cell death. Cell Reports, 24(10), 2658–2668.

    CAS  PubMed  Google Scholar 

  119. Gossage, L., & Eisen, T. (2010). Targeting multiple kinase pathways: A change in paradigm. Clinical Cancer Research, 16(7), 1973–1978.

    CAS  PubMed  Google Scholar 

  120. Knight, Z. A., Lin, H., & Shokat, K. M. (2010). Targeting the cancer kinome through polypharmacology. Nature Reviews Cancer, 10(2), 130–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rao, S., et al. (2019). A multitargeted probe-based strategy to identify signaling vulnerabilities in cancers. The Journal of Biological Chemistry, 294(21), 8664–8673.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lechtenberg, B. C., et al. (2017). Structure-guided strategy for the development of potent bivalent ERK inhibitors. ACS Medicinal Chemistry Letters, 8(7), 726–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gu, S., et al. (2018). PROTACs: An emerging targeting technique for protein degradation in drug discovery. BioEssays, 40(4), e1700247.

    PubMed  Google Scholar 

  124. An, S., & Fu, L. (2018). Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. eBioMedicine, 36, 553–562.

    PubMed  PubMed Central  Google Scholar 

  125. Kornev, A. P., et al. (2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17783–17788.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gogl, G., Toro, I., & Remenyi, A. (2013). Protein-peptide complex crystallization: A case study on the ERK2 mitogen-activated protein kinase. Acta Crystallographica Section D Biological Crystallography, 69(Pt 3), 486–489.

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin N. Dalby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sammons, R.M., Dalby, K.N. (2020). A Toolbox of Structural Biology and Enzyme Kinetics Reveals the Case for ERK Docking Site Inhibition. In: Shapiro, P. (eds) Next Generation Kinase Inhibitors. Springer, Cham. https://doi.org/10.1007/978-3-030-48283-1_6

Download citation

Publish with us

Policies and ethics