Skip to main content

Elastin in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1272))

Abstract

Elastic fibers are found in the extracellular matrix (ECM) of tissues requiring resilience and depend on elasticity. Elastin and its degradation products have multiple roles in the oncologic process. In many malignancies, the remodeled ECM expresses high levels of the elastin protein which may have either positive or negative effects on tumor growth. Elastin cross-linking with other ECM components and the enzymes governing this process all have effects on tumorigenesis. Elastases, and specifically neutrophil elastase, are key drivers of invasion and metastasis and therefore are important targets for inhibition. Elastin degradation leads to the generation of bioactive fragments and elastin-derived peptides that further modulate tumor growth and spread. Interestingly, elastin-like peptides (ELP) and elastin-derived peptides (EDP) may also be utilized as nano-carriers to combat tumor growth. EDPs drive tumor development in a variety of ways, and specifically targeting EDPs and their binding proteins are major objectives for ongoing and future anti-cancer therapies. Research on both the direct anti-cancer activity and the drug delivery capabilities of ELPs is another area likely to result in novel therapeutic agents in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    Article  CAS  PubMed  Google Scholar 

  2. Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461

    Article  CAS  PubMed  Google Scholar 

  3. Mecham RP (1991) Elastin synthesis and fiber assembly. Ann N Y Acad Sci 624:137–146

    Article  CAS  PubMed  Google Scholar 

  4. Nivison-Smith L and Weiss A (2011) Elastin based constructs, Regenerative medicine and tissue engineering – cells and biomaterials, Daniel Eberli, IntechOpen. https://doi.org/10.5772/23660

  5. Bashir MM, Indik Z, Yeh H et al (1989) Characterization of the complete human elastin gene. J Biol Chem 264:8887–8891

    Article  CAS  PubMed  Google Scholar 

  6. Davidson JM, Zang MC, Zoia O, Giro MG (1995) Regulation of elastin synthesis in pathological states CIBA Found. Symp 192:81–89

    CAS  Google Scholar 

  7. Perrin S, Foster JA (1997) Developmental regulation of elastin gene expression. Crit Rev Eukaryot Gene Expr 7:1–10

    Article  CAS  PubMed  Google Scholar 

  8. Hinek A (1995) The 67 kDa spliced variant of beta-galactosidase serves as a reusable protective chaperone for tropoelastin. Ciba Found Symp 192:185–191; discussion 191-186

    CAS  PubMed  Google Scholar 

  9. Indik Z, Yeh H, Ornstein-Goldstein N et al (1987) Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA. Proc Natl Acad Sci U S A 84:5680–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mithieux SM, Weiss AS (1995) Tandem integration of multiple ILV5 copies and elevated transcription in polyploid yeast. Yeast 15(11):311–316

    Article  Google Scholar 

  11. Vrhovski B, Jensen S et al (1997) Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem 250:92–98

    Article  CAS  PubMed  Google Scholar 

  12. Kagan HM, Sullivan KA (1982) Lysyl oxidase: preparation and role in elastin biosynthesis. Methods Enzymol 82 Pt A:637–650

    Article  CAS  PubMed  Google Scholar 

  13. Umeda H, Nakamura F, Suyama K (2001) Oxodesmosine and isooxodesmosine, candidates of oxidative metabolic intermediates of pyridinium cross-links in elastin. Arch Biochem Biophys 385:209–219

    Article  CAS  PubMed  Google Scholar 

  14. Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheatle SGL, Cutler M (1931) Tumors of the breast – their pathology, symptoms, diagnosis and treatment. Edward Arnold &Co, London

    Google Scholar 

  16. Jackson JG, Orr JW (1957) The ducts of carcinomatous breast, with particular reference to connective-tissue change. J Pathol Bacteriol 74:265–274

    Article  CAS  Google Scholar 

  17. Beattie JM, WEC D (1926) A textbook of special pathology, 3rd edn. William Heinemann, Ltd., London

    Google Scholar 

  18. Bernath G (1952) Amyloidosis in malignant tumor. Acta Morphol 2:137–144

    Google Scholar 

  19. Lundmark C (1972) Breast cancer and elastosis. Cancer 30:1195–1201

    Article  CAS  PubMed  Google Scholar 

  20. Shivas AA, Douglas JG (1972) The prognostic significance of elastosis in breast carcinoma. J R Coll Surg Edinb 17:315–320

    CAS  PubMed  Google Scholar 

  21. Azzopardi JG, Laurini RN (1974) Elastosis in breast cancer. Cancer 33:174–183

    Article  CAS  PubMed  Google Scholar 

  22. Rolland PH, Jacquemier J, Martin PM (1980) Histological differentiation in human breast cancer is related to steroid receptors and stromal elastosis. Cancer Chemother Pharmacol 5:73–77

    Article  CAS  PubMed  Google Scholar 

  23. Parfrey NA, Doyle CT (1985) Elastosis in benign and malignant breast disease. Hum Pathol 16:674–676

    Article  CAS  PubMed  Google Scholar 

  24. Fisher ER, Redmond CK, Liu H, Pochette H, Fisher B, Collaborating NSABP investigators (1980) Correlation of estrogen receptor and pathological characteristics of invasive breast cancer. Cancer (Phila) 45:349–353

    Article  CAS  Google Scholar 

  25. Glaubitz LC, Bowen JH, Cox ED, McCarty KS (1984) Elastosis in human breast cancer. Correlation with sex steroid receptors and comparison with clinical outcome. Arch Pathol Lab Med 108:27–30

    CAS  PubMed  Google Scholar 

  26. Horwitz KB, McGuire WL (1978) Estrogen control of progesterone receptor in human breast cancer. J Biol Chem 253:2223–2228

    Article  CAS  PubMed  Google Scholar 

  27. Howat JMT, Barnes DM, Harris M, Swindell R (1983) The association of cytosol estrogen and progesterone receptors with histological features of breast cancer and early recurrence of disease. Br J Cancer 47:629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Master JRW, Hawkins RA, Sangster K et al (1978) Estrogen receptors, cellularity, elastosis, and menstrual status in human breast cancer. EUT J Cancer 14:303–307

    Article  Google Scholar 

  29. Robertson AJ, Brown RA, Cree IA, McGillivray JB, Slidders W, Swanson Beck J (1981) Prognostic value of measurement of elastosis in breast carcinoma. J Clin Pathol 34:738–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasmussen BB, Pedersen BV, Thorpe SM, Rose G (1985) Elastosis in relation to prognosis in primary breast carcinoma. Cancer Res 45:1428–1430

    CAS  PubMed  Google Scholar 

  31. Chen Y, Klingen TA, Wik E et al (2014) Breast cancer stromal elastosis is associated with mammography screening detection, low Ki67 expression and favourable prognosis in a population-based study. Diagn Pathol 9:230–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Masters JRW, Willis RR, King RJB, Rubens RD (1979) Elastosis and response to endocrine therapy in human breast cancer. Br J Cancer 39:536–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tremblay G (1974) Elastosis in tubular carcinoma of the breast. Arch Pathol 98:302–307

    CAS  PubMed  Google Scholar 

  34. Martinez Hernandez A, Francis DJ, Silverberg SG (1977) Elastosis and other stromal reactions in benign and malignant breast tissue. Cancer (Phila) 40:700–706

    Article  Google Scholar 

  35. Al-Zuhair AGH, Al-Adnani MS, Al-Bader AA, Abdulla MA (1986) Distribution and ultrastructural characterization of the stroma in scirrhous “infiltrating” carcinoma of the human breast. J Submicrosc Cytol 18:409–416

    CAS  PubMed  Google Scholar 

  36. Mera SL, Davies JD (1987) Elastosis in breast carcinoma: I. Immunohistochemical characterization of elastic fibres. J Pathol 151:103–110

    Article  CAS  PubMed  Google Scholar 

  37. Krishnan R, Cleary EG (1990) Elastin gene expression in elastotic human breast cancers and epithelial cell lines. Cancer Res 50(7):2164–2171

    CAS  PubMed  Google Scholar 

  38. Whitehead RH, Bertoncello I, Webber LM, Pedersen JS (1983) A new human breast carcinoma cell line (PMC 42) with stem cell characteristics. 1. Morphological characterization. J Nail Cancer Inst 70:649–661

    CAS  Google Scholar 

  39. Eto T, Suzuki H, Honda A et al (1996) The change of the stromal elastotic framework in the growth of the peripheral lung adenocarcinomas. Cancer 77:646–656

    Article  CAS  PubMed  Google Scholar 

  40. Lomax Smith JD, Azzopardi JG (1978) The hyaline cell: a distinctive feature of "mixed" salivary tumours. Histopathology 2:77–92

    Article  CAS  PubMed  Google Scholar 

  41. Kondo T, Nakazawa T, Murata S, Katoh R (2005) Stromal elastosis in papillary thyroid carcinomas. Hum Pathol 36:474–479

    Article  PubMed  Google Scholar 

  42. Isaacson C, Wainwright HC, Hamilton DG, Oh TL (1985) Hollow visceral myopathy in black south Africans. A report of 14 cases. S Afr Med J 67:1015–1017

    CAS  PubMed  Google Scholar 

  43. Fukushima M, Fukuda Y, Kawamoto M, Yamanaka N (2000) Elastosis in lung carcinoma: Immunohistochemical, ultrastructural and clinical studies. Pathology Int 50:626–635

    Article  CAS  Google Scholar 

  44. Azzopardi JG, Zayid I (1972) Elastic tissue in tumours of salivary glands. J Pathol 107:149–156

    Article  CAS  PubMed  Google Scholar 

  45. David R, Buchner A (1980) Elastosis in benign and malignant salivary gland tumors. Cancer 45:2301–2310

    Article  CAS  PubMed  Google Scholar 

  46. Jacob MP, Hornebeck W (1985) Isolation and characterization of insoluble and kappa−elastins. Front Matrix Biol 10:92–129

    CAS  Google Scholar 

  47. Partridge SM, Davies HF, Adair GS (1955) The chemistry of connective tissues. 2. Soluble protein derived from partial hydrolysis of elastin. Biochem J 61:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hornebeck W, Emonard H, Monboisse JC, Bellon G (2002) Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 12:231–241

    Article  CAS  PubMed  Google Scholar 

  49. Pardo A, Selman M (1999) Proteinase-antiproteinase imbalance in the pathogenesis of emphysema: the role of metalloproteinases in lung damage. Histol Histopathol 14:227–233

    CAS  PubMed  Google Scholar 

  50. Fulop T, Larbi A (2002) Putative role of 67 kDa elastin-laminin receptor in tumor invasion. Semin Cancer Biol 12:219–229

    Article  CAS  PubMed  Google Scholar 

  51. Jacob MP, Fulop T Jr, Foris G, Robert L (1987) Effect of elastin peptides on ion fluxes in mononuclear cells, fibroblasts, and smooth muscle cells. Proc Natl Acad Sci U S A 84:995–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faury G, Garnier S, Weiss AS et al (1998) Action of tropoelastin and synthetic elastin sequences on vascular tone and on free Ca2+ level in human vascular endothelial cells. Circ Res 82:328–336

    Article  CAS  PubMed  Google Scholar 

  53. Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66:859–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hauck M, Seres I, Kiss I et al (1995) Effects of synthesized elastin peptides on human leukocytes. Biochem Mol Biol Int 37:45–55

    CAS  PubMed  Google Scholar 

  55. Fulop T Jr, Jacob MP, Varga Z et al (1986) Effect of elastin peptides on human monocytes includes Ca2+ mobilization, stimulation of respiratory burst and enzyme secretion. Biochem Biophys Res Commun 141:92–98

    Article  CAS  PubMed  Google Scholar 

  56. Hance KA, Tataria M, Ziporin SJ, Lee JK, Thompson RW (2001) Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67–kD cell surface elastin receptor. J Vasc Surg 35:254–261

    Article  Google Scholar 

  57. Pocza P, Suli-Vargha H, Darvas Z, Falus A (2008) Locally generated VGVAPG and VAPG elastin-derived peptides amplify melanoma invasion via the galectin-3 receptor. Int J Cancer 122:1972–1980

    Article  CAS  PubMed  Google Scholar 

  58. Devy J, Duca L, Cantarelli B et al (2010) Elastin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcol-A (MMP-1) collagenase. Br J Cancer 103:1562–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mochizuki S, Brassart B, Hinek A (2002) Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 277:44854–44863

    Article  CAS  PubMed  Google Scholar 

  60. Jung S, Hinek A, Tsugu A et al (1999) Astrocytoma cell interaction with elastin substrates: implications for astrocytoma invasive potential. Glia 25:179–189

    Article  CAS  PubMed  Google Scholar 

  61. Hinek A, Jung S, Rutka JT (1999) Cell surface aggregation of elastin receptor molecules caused by suramin amplified signals leading to proliferation of human glioma cells. Acta Neuropathol 97:399–407

    Article  CAS  PubMed  Google Scholar 

  62. Devy J, Duca L, Cantarelli B et al (2010) Elastin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcol-A(MMP-1) collagenase. Br J Cancer 103:1562–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    Article  CAS  PubMed  Google Scholar 

  64. Brassart B, Fuchs P, Huet E et al (2001) Conformational dependence of collagenase (matrix metalloproteinase- 1) up-regulation by elastin peptides in cultured fibroblasts. J Biol Chem 276:5222–5227

    Article  CAS  PubMed  Google Scholar 

  65. Huet E, Brassart B, Cauchard JH et al (2002) Cumulative influence of elastin peptides and plasminogen on matrix metalloproteinase activation and type I collagen invasion by HT-1080fibrosarcomacells. Clin Exp Metastasis 19:107–117

    Article  CAS  PubMed  Google Scholar 

  66. Toupance S, Brassart B, Rabenoelina F et al (2012) Elastin-derived peptides increase invasive capacities of lung cancer cells by post-transcriptional regulation of MMP-2 and uPA. Clin Exp Metastasis 29:511–522

    Article  CAS  PubMed  Google Scholar 

  67. Hinek A, Wrenn DS, Mecham RP, Barondes SH (1988) The elastin receptor: a galactoside-binding protein. Science 239:1539–1541

    Article  CAS  PubMed  Google Scholar 

  68. Mecham RP, Hinek A, Entwistle R et al (1989) Elastin binds to a multifunctional 67 kilodalton peripheral membrane protein. Biochemistry 28:3716–3722

    Article  CAS  PubMed  Google Scholar 

  69. Privitera S, Prody CA, Callahan JW et al (1998) The 67-kDa enzymatically inactive alternatively spliced variant of beta galactosidase is identical to the elastin/laminin-binding protein. J Biol Chem 273:6319–6326

    Article  CAS  PubMed  Google Scholar 

  70. Salesse S, Guillot A, Blaise S et al (2016) The elastin receptor complex: a unique matricellular receptor with high anti-tumoral potential. Front Pharmacol 7(32):1–10

    Google Scholar 

  71. Duca L, Blanchevoye C, Cantarelli B et al (2007) The elastin receptor complex transduces signals through the catalytic activity of its Neu-1 subunit. J Biol Chem 282:12484–12491

    Article  CAS  PubMed  Google Scholar 

  72. Brassart B, Fuchs P, Huet E et al (2001) Conformational dependence of collagenase (matrix metalloproteinase-1) up-regulation by elastin peptides in cultured fibroblasts. J Biol Chem 276:5222–5227

    Article  CAS  PubMed  Google Scholar 

  73. Floquet N, Héry-Huynh S, Dauchez M et al (2004) Structural characterization of VGVAPG, an elastin-derived peptide. Biopolymers 76:266–280

    Article  CAS  PubMed  Google Scholar 

  74. Fuchs PFJ, Bonvin AMJJ, Bochicchio B et al (2006) Kinetics and thermodynamics of type VIII beta-turn formation: a CD, NMR, and microsecond explicit molecular dynamics study of the GDNP tetrapeptide. Biophys J 90:2745–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moroy G, Alix AJP, Héry-Huynh S (2005) Structural characterization of human elastin derived peptides containing the GXXP sequence. Biopolymers 78:206–220

    Article  CAS  PubMed  Google Scholar 

  76. Plow EF, Haas TA, Zhang L et al (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788

    Article  CAS  PubMed  Google Scholar 

  77. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

    Article  CAS  PubMed  Google Scholar 

  78. Bax DV, Rodgers UR, Bilek MMM et al (2009) Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem 284:28616–28623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pocza P, Süli-Vargha H, Darvas Z et al (2008) Locally generated VGVAPG and VAPG elastin-derived peptides amplify melanoma invasion via the galectin-3 receptor. Int J Cancer 122:1972–1980

    Article  CAS  PubMed  Google Scholar 

  80. Ochieng J, Furtak V, Lukyanov P (2004) Extracellular functions of galectin-3. Glycoconj J 19:527–535

    Article  Google Scholar 

  81. Wang Y, Nangia-Makker P, Tait L et al (2009) Regulation of prostate cancer progression by galectin-3. Am J Pathol 174:1515–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ochieng J, Warfield P, Green-Jarvis B et al (1999) Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem 75:505–514

    Article  CAS  PubMed  Google Scholar 

  83. Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay A (2016) Elastin-like polypeptides: therapeutic applications for an emerging class of nanomedicines. J Control Release 28(240):93–108

    Article  CAS  Google Scholar 

  84. McDaniel JR, Callahan DJ, Chilkoti A (2010) Drug delivery to solid tumors by elastin-like polypeptides. Adv Drug Deliv Rev 62(15):1456–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sarangthem V, Kim Y, Singh TD et al (2016) Multivalent targeting based delivery of therapeutic peptide using AP1-ELP carrier for effective cancer therapy. Theranostics 6:2235–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sarangthem V, Cho EA, Yi A, Kim SK, Lee BH, Park RW (2018) Application of Bld-1-embedded elastin-like polypeptides in tumor targeting. Sci Rep 8:3892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Robert L, Jacob MP, Fülop T, Timar J, Hornebeck W (1989) Elastonectin and the elastin receptor. Pathol Biol (Paris) 37:736–741

    CAS  Google Scholar 

  88. Meyer DE, Kong GA, Dewhirst MW, Zalutsky MR, Chilkoti A (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res 61:1548–1554

    CAS  PubMed  Google Scholar 

  89. Schmitt M, Janicke F, Graeff H (1992) Proteases, matrix degradation and tumor cell spread. Fibrinolysis 6(Suppl 4):1–170

    Google Scholar 

  90. Nakajima M, Chop AM (1991) Tumor invasion and extracellular matrix degradative enzymes: regulation of activity by organ factors. Semin Cancer Biol 2:115–127

    CAS  PubMed  Google Scholar 

  91. Carter RL (1982) Some aspects of the metastatic process. J Clin Pathol 35:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morihara K, Tsuzuki H (1967) Arch Biochem Biophys 120:68–78

    Article  CAS  PubMed  Google Scholar 

  93. Janoff A, Schere J (1968) Elastolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med 128:1137–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baugh RJ, Travis J (1976) Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry 15:836–841

    Article  CAS  PubMed  Google Scholar 

  95. Banda MJ, Werb Z (1981) Mouse macrophage elastase. Biochem J 193:589–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kessenbrock K, Fröhlich L, Sixt M, Lämmermann T et al (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest 118:2438–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ (2016) Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep 14:708–722

    Article  CAS  PubMed  Google Scholar 

  98. Shapiro SD, Goldstein NM, Houghton AM, Kobayashi DK, Kelley D, Belaaouaj A (2003) Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol 163:2329–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gregory AD, Kliment CR, Metz HE et al (2015) Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 98:143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alfaidi M, Wilson H, Daigneault M et al (2015) Neutrophil elastase promotes interleukin-1beta secretion from human coronary endothelium. J Biol Chem 290:24067–24078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lapis K, Tímár J (2002) Role of elastin–matrix interactions in tumor progression. Semin Cancer Biol 12:209–217

    Article  CAS  PubMed  Google Scholar 

  102. Hornebeck W, Derouette JC, Brechemier D, Adnet JJ, Robert L (1977) Elastogenesis and elastinolytic activity in human breast cancer. Biomedicine 26:48–52

    CAS  PubMed  Google Scholar 

  103. Kao RT, Wong M, Stern R (1982) Elastin degradation by proteases from cultured human breast cancer cells. Biochem Biophys Res Commun 105:383–389

    Article  CAS  PubMed  Google Scholar 

  104. Zeydel M, Nakagawa S, Biempica L, Takahashi S (1986) Collagenase and elastase production by mouse mammary adenocarcinoma primary cultures and cloned cells. Cancer Res 46:6438–6445

    CAS  PubMed  Google Scholar 

  105. Grant AJ, Lerro KA, Wu CW (1990) Cell associated elastase activities of rat mammary tumour cells. Biochem Int 22:1077–1084

    CAS  PubMed  Google Scholar 

  106. Sato T, Takahashi S, Mizumoto T et al (2006) Neutrophil elastase and cancer. Surg Oncol 15:217–222

    Article  PubMed  Google Scholar 

  107. Shapiro SD, Goldstein NM, Houghton AM et al (2003) Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol 163:2329–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vaguliene N, Zemaitis M, Lavinskiene S, Miliauskas S, Sakalauskas R (2013) Local and systemic neutrophilic inflammation in patients with lung cancer and chronic obstructive pulmonary disease. BMC Immunol 14:36–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Kristensen JH, Karsdal MA, Sand JM et al (2015) Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling. BMC Pulm Med 15:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kistowski M, Dębski J, Karczmarski J et al (2017) A strong neutrophil elastase proteolytic fingerprint marks the carcinoma tumor proteome. Mol Cell Proteomics 16:213–227

    Article  CAS  PubMed  Google Scholar 

  111. Akizuki M, Fukutomi T, Takasugi M et al (2007) Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia 9:260–264

    Article  PubMed  PubMed Central  Google Scholar 

  112. Foekens JA, Ries C, Look MP, Gippner-Steppert C, Klijn JG, Jochum M (2003) The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Res 63:337–341

    CAS  PubMed  Google Scholar 

  113. Cools-Lartigue J, Spicer J, McDonald B et al (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123:3446–3458

    Article  CAS  PubMed Central  Google Scholar 

  114. Lerman I, Hammes SR (2018) Neutrophil elastase in the tumor microenvironment. Steroids 133:96–101

    Article  CAS  PubMed  Google Scholar 

  115. Park J, Wysocki RW, Amoozgar Z et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8(361):361ra138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Miller-Ocuin JL, Liang X, Boone BA et al (2019) DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Onco Targets Ther 8(9):e1605822

    Google Scholar 

  117. Shang K, Bai Y, Wang C et al (2012) Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One 7:e51848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Steele CW, Karim SA, Leach JDG et al (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29:832–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Toh B, Wang X, Keeble J et al (2011) Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 9(9):e1001162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Smith-Mungo LI, Kagan HM (1998) Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 16:387–398

    Article  CAS  PubMed  Google Scholar 

  121. Wang SX, Mure M, Medzihradszky KF et al (1996) A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Science 273:1078–1084

    Article  CAS  PubMed  Google Scholar 

  122. Moon H, Finney J, Ronnebaum T, Mure M (2014) Human Lysyl Oxidase-like 2. Bioorg Chem 57:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rucker RB, Kosonen T, Clegg MS et al (1998) Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr 67:996S–1002S

    Article  CAS  PubMed  Google Scholar 

  124. Moon H, Finney J, Ronnebaum T, Mure M (2014) Human Lysyl oxidase-like 2. Bioorg Chem 57:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Johnston KA, Lopez KM (2018) Lysyl oxidase in cancer inhibition and metastasis. Cancer Letters 417:174e181

    Article  CAS  Google Scholar 

  126. Fitzgerald J, Bateman JF (2001) A new FACIT of the collagen family: COL21A1. FEBS Lett 505:275–280

    Article  CAS  PubMed  Google Scholar 

  127. Yamauchi M, Sricholpech M (2012) Lysine post-translational modifications of collagen. Essays Biochem 52:113–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rosenbloom J (1987) Elastin: an overview. Meth Enzymol 144:172–196

    Article  CAS  Google Scholar 

  129. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 25(139):891–906

    Article  CAS  Google Scholar 

  130. Brodsky AS, Xiong J, Yang D et al (2016) Identification of stromal marker ColXa1 and tumor inflating lymphocytess as putative predictive markers of stromal marker of response to neoadjuvant therapy in hormone positive/Her2 positive breast cancer. BMC Cancer 16:274–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Wang Y, Lu S, Xiong J et al (2019) ColXα1 is a stromal component that Colocalizes with elastin in the breast tumor extracellular matrix. J Pathol Clin Res 5:40–52

    Article  CAS  PubMed  Google Scholar 

  132. Kao RT, Hall J, Stern R (1986) Collagen and elastin synthesis in human stroma and breast carcinoma cell lines: modulation by the extracellular matrix. Connect Tissue Res 14:245–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Song, E.C., Resnick, M.B. (2020). Elastin in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1272. Springer, Cham. https://doi.org/10.1007/978-3-030-48457-6_1

Download citation

Publish with us

Policies and ethics