Skip to main content

Role of Milk Fat in Dairy Products

  • Chapter
  • First Online:
Advanced Dairy Chemistry, Volume 2

Abstract

Milk contains approximately 3.5% (w/v) fat. Since the manufacture of many dairy products involves removal of moisture, or in some other way concentration of the lipid fraction, milk fat is often a major component of dairy products. This chapter discusses the role of milk fat in butter and related spreads, cream products, cheese, ice cream, ingredient powders, infant milk formulae and milk chocolate. Milk fat gives butter its structure in the form of a three-dimensional network of fat crystals and also contributes to its flavour. Cream is a fluid milk product comparatively rich in fat, and the contribution of fat to cream is important for its mouthfeel and flavour. The significance of milk fat in different cream products is based on their fat content, fat distribution, the physical state of the fat and the chemical, physical and sensory properties of the non-fat ingredients. Cheese is essentially a concentrated protein gel containing fat globules which act as points of weakness in the gel matrix, and thus milk fat contributes to the texture of the product in addition to contributing to flavour, colour and functional behaviour. Fat and fat structure development in ice cream and related frozen dairy desserts are critical to its optimal structure and physical properties, stability, flavour and texture. In the case of ingredient powders, lipid levels can vary greatly depending on the type of dairy powder and the procedures involved in their processing. The role of milk fat in various dairy powders is discussed, with a particular focus on those with functional properties affected markedly by surface fat. Infant milk formula is a highly specialized powder with specific nutritional requirements for the neonate, and much work has been done in recent years to structure triacylglycerols to make the fat components mimic those of human milk. Chocolate is a complex suspension of cocoa solids, sugar crystals and milk powder, and milk fat influences its flavour, texture and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Atherogenic index: the sum of the proportion of lauric and palmitic and four times the myristic levels, divided by the total concentration of saturated fatty acids

  2. 2.

    Thrombogenic index: an index of the tendency to form blood clots in blood vessels

References

References for Section 9.1

  • Anderson, M., Brooker, B. E. & Needs, E. C. (2005). The role of proteins in the stabilization/destabilization of dairy foams. In Food emulsions and foams. Cambridge: Woodhead Publishing Ltd. 100–109.

    Google Scholar 

  • Auldist, M. J., Walsh, B. J. & Thomson, N. A. (1998). Seasonal and lactational influences on bovine milk composition in New Zealand. Journal of Dairy Research, 65, 4001–4411.

    Article  Google Scholar 

  • Baldwin, R. R., Baldry, R. P. & Johansen, R. G. (1971). Fat systems for bakery products. Journal of the American Oil Chemists’ Society, 49(8), 473–477.

    Article  Google Scholar 

  • Bradley, R. L. & Smukowski, M. (2009). Chapter 6: Butter. In The sensory evaluation of dairy products (2nd ed.). Eds. Clark, S., Costello, M., Drake, M-A. & Bodyfelt, F. Washington, DC: Springer. 135–165.

    Google Scholar 

  • Brooker, B. E. (1986). The development of structure in whipped cream. Food Structure, 5(2), 277–285.

    Google Scholar 

  • Brooker, B. E. (1993). The stabilisation of air in foods containing fat – a review. Food Structure, 12, 115–122.

    Google Scholar 

  • Bylund, G. (1995). Dairy processing handbook. Lund: Tetra Pak Processing Systems AB.

    Google Scholar 

  • Chapman, D. (1962). The polymorphism of glycerides. Chemical Reviews, 62, 433–456.

    Article  CAS  Google Scholar 

  • Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J. & Doreau, M. (2007). Diet, rumen biohydration and nutritional quality of cow and goat milk fat. European Journal of Lipid Science and Technology, 109, 828–855.

    Article  CAS  Google Scholar 

  • CLAL (2019). Butter: Per capita consumption. CLAL S.R.L. Available from https://www.clal.it/en/?section=tabs_consumi_procapite

  • Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L. & Peyraud, J.-L. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science, 89, 1956–1969.

    Article  CAS  PubMed  Google Scholar 

  • Cui, L., Fan, J., Sun, Y., Zhu, Z. & Yi, J. (2018). The prooxidant effect of salts on the lipid oxidation of lecithin-stabilized oil-in-water emulsions. Food Chemistry, 252, 28–32.

    Article  CAS  PubMed  Google Scholar 

  • Cullinane, N., Aherne, S., Connolly, J. F. & Phelan, J. A. (1984a). Seasonal variation on the triglyceride and fatty acid composition of Irish butter. Irish Journal of Agricultural and Food Research, 8(1), 1–12.

    CAS  Google Scholar 

  • Cullinane, N., Condon, D., Eason, D., Phelan, J. A. & Connolly, J. F. (1984b). Influence of season and processing parameters on the physical properties of Irish butter. Irish Journal of Agricultural and Food Research, 8(1), 13–25.

    CAS  Google Scholar 

  • Deeth, H. C. (1997). The role of phospholipids in the stability of milk fat globules. Australian Journal of Dairy Technology, 42, 44–46.

    Google Scholar 

  • Deeth, H. C. (2006). Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16, 555–562.

    Article  CAS  Google Scholar 

  • Deffense, E. (1993). Milk fat fractionation today: A review. Journal of the American Oil Chemists' Society, 70(12), 1193–1201.

    Article  CAS  Google Scholar 

  • DeMan, J. M. & Beers, A. M. (1987). Fat crystal networks: Structure and rheological properties. Journal of Texture Studies, 18(4), 303–318.

    Article  Google Scholar 

  • Emmons, D. B., Froehlich, D. A., Paquette, G. J., Butler, G., Beckett, D. C., Modler, H. W., Brackenridge, P. & Daniels, G. (1986). Light transmission characteristics of wrapping materials and oxidation of butter by fluorescent light. Journal of Dairy Science, 69(9), 2248–2267.

    Article  CAS  Google Scholar 

  • EU. (2013). Council Regulation (EU) No 1308/2013 of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (Eec) No 922/72, (Eec) No 234/79, (Ec) No 1037/2001 and (Ec) No 1234/2007. OJ, L 347, 671–854.

    Google Scholar 

  • Evers, J. M. (2004). The milkfat globular membrane - compositional and structural changes post secretion by the mammary secretory cell. International Dairy Journal, 14, 661–674.

    Article  CAS  Google Scholar 

  • Foote, C. S. (1976). Photosensitized oxidation and singlet oxygen: Consequences in biological systems. In W. A. Pryor (Ed.), Free radicals in biology. New York: Academic.

    Google Scholar 

  • Fredrick, E., Van de Walle, D., Walstra, P., Zijtveld, J. H., Fischer, S., Van der Meeren, P. & Dewettinck, K. (2011). Isothermal crystallization behaviour of milk fat in bulk and emulsified state. International Dairy Journal, 21, 685–695.

    Article  CAS  Google Scholar 

  • Goff, H. D. (1997). Instability and partial coalescence in whippable dairy emulsions. Journal of Dairy Science, 80(10), 2620–2630.

    Article  CAS  Google Scholar 

  • Herrera, M. L. & Hartel, R. W. (2000). Effect of processing conditions of physical properties of a milk fat model system: Rheology. Journal of the American Oil Chemists' Society, 77(11), 1189–1196.

    Article  CAS  Google Scholar 

  • Holtrum, N. E. (2004). Emulsion droplet spreading at air/water interfaces: Mechanisms and relevance to the whipping of cream. PhD thesis, Wageningen University.

    Google Scholar 

  • Holzmüllera, W., Müllera, M., Himberta, D. & Kulozik, U. (2016). Impact of cream washing on fat globules and milk fat globule membrane proteins. International Dairy Journal, 59, 52–61.

    Article  CAS  Google Scholar 

  • Hulshof, P. J. M., van Roekel-Jansen, T., van de Bovenkamp, P. & West, C. E. (2006). Variation in retinol and carotenoid content of milk and milk products in the Netherlands. Journal of Food Composition and Analysis, 19, 67–75.

    Article  CAS  Google Scholar 

  • Jay, J. M. (2000). Modern food microbiology. New York: Chapman and Hall.

    Book  Google Scholar 

  • Jensen, S. K. & Nielsen, K. N. (1996). Tocopherols, retinol, β-carotene and fatty acids in fat globule membrane and fat globule core in cows' milk. Journal of Dairy Research, 63, 1–10.

    Article  Google Scholar 

  • Juriaanse, A. C. & Heertje, I. (1988). Microstructure of shortenings, margarine and butter – a review. Food Structure, 7(2), 181–188.

    Google Scholar 

  • Kato, Y. (2003). Chemical and sensory changes in flavor of roux prepared from wheat flour and butter by heating to various temperatures. Food Science and Technology Research, 9(3), 264–270.

    Article  CAS  Google Scholar 

  • Khan, I. T., Bule, M., Ullah, R., Nadeem, M., Asif, S. & Niaz, K. (2019). The antioxidant components of milk and their role in processing, ripening, and storage: Functional food. Veterinary World, 12, 12–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyuncu, M. & Tuncturk, Y. (2017). Effect of packaging method and light exposure on oxidation and lipolysis in butter. Oxidation Communications, 40(2), 785–798.

    CAS  Google Scholar 

  • Krause, A. J., Miracle, R. E., Sanders, T. H., Dean, L. L. & Drake, M. A. (2008). The effect of refrigerated and frozen storage on butter flavor and texture. Journal of Dairy Science, 91(2), 455–465.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. & Martini, S. (2018). Effect of cream aging temperature and agitation on butter properties. Journal of Dairy Science, 101(9), 7724–7735.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Lavigne, F., Lesieur, P., Bourgaux, P. & Ollivon, M. (2001). Thermal and structural behavior of milk fat. 1. Unstable species of anhydrous milk fat. Journal of Dairy Science, 84(4), 756–766.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Bourgaux, C., Leisieur, P. & Ollivon, M. (2002). Crystalline structures formed in cream and anhydrous milk fat at 4°C. Lait, 82, 317–335.

    Google Scholar 

  • Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., Lecontea, N. & Robert, B. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125, 355–368.

    Article  CAS  Google Scholar 

  • Lozano, P. R., Miracle, E. R., Krause, A. J., Drake, M. & Cadwallader, K. R. (2007). Effect of cold storage and packaging material on the major aroma components of sweet cream butter. Journal of Agricultural and Food Chemistry, 55(19), 7840–7846.

    Article  CAS  PubMed  Google Scholar 

  • Maga, J. A. & Katz, I. (2009). Pyrazines in foods: An update. Critical Reviews in Food Science and Nutrition, 16(1), 1–48.

    Google Scholar 

  • Mallia, S., Escher, F. & Schlichtherle-Cerny, H. (2008). Aroma-active compounds of butter: A review. European Food Research and Technology, 226, 315–325.

    Article  CAS  Google Scholar 

  • Mattice, K. D. & Marangoni, A. G. (2017). Matrix effects on the crystallization behaviour of butter and roll-in shortening in laminated bakery products. Food Research International, 96, 54–63.

    Article  CAS  PubMed  Google Scholar 

  • McGee, H. (2004). On food and cooking – The science and Lore of the kitchen. New York: Scribner.

    Google Scholar 

  • McNeill, G. P., O'Donoghue, A. & Connolly, J. F. (1986). Quantification and identification of flavour components leading to lipolytic rancidity in stored butter. Irish Journal of Agricultural and Food Research, 10(1), 1–10.

    CAS  Google Scholar 

  • Méndez-Cid, F. J., Centeno, J. A., Martínez, S. & Carballo, J. (2017). Changes in the chemical and physical characteristics of cow’s milk butter during storage: Effects of temperature and addition of salt. Journal of Food Composition and Analysis, 63, 121–132.

    Article  CAS  Google Scholar 

  • Min, D. B. & Boff, J. M. (2002). Chemistry and reaction of singlet oxygen in foods. Comprehensive Reviews in Food Science and Food Safety, 1, 58–72.

    Article  CAS  PubMed  Google Scholar 

  • Moens, K., Tzompa-Sosa, D. A., Van de Walle, D., Van der Meeren, P. & Dewettinck, K. (2019). Influence of cooling rate on partial coalescence in natural dairy cream. Food Research International, 120, 819–828.

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan, T. F., Faulkner, H., McAuliffe, S., O'Sullivan, M. G., Hennessy, D., Dillon, P., Kilcawley, K. N., Stanton, C. & Ross, R. P. (2016). Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. Journal of Dairy Science, 99(12), 9441–9460.

    Article  PubMed  CAS  Google Scholar 

  • Ollilainen, V., Heininen, M., Linkola, E., Varo, P. & Koivistoinen, P. (1989). Carotenoids and retinoids in Finnish foods: Dairy products and eggs. Journal of Dairy Science, 72(9), 2257–2265.

    Article  CAS  PubMed  Google Scholar 

  • Osinchak, J. E., Hultin, H. O., Zajicek, O. T., Kelleher, S. D. & Huang, C.-H. (1992). Effect of NaCl on catalysis of lipid oxidation by the soluble fraction of fish muscle. Free Radical Biology and Medicine, 12, 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Patton, S. (1954). The mechanism of sunlight flavor formation in milk with special reference to methionine and riboflavin. Journal of Dairy Science, 37(4), 446–452.

    Article  CAS  Google Scholar 

  • Pérez-Martínez, J. D., Reyes-Hernández, J., Dibildox-Alvarado, E. & Toro-Vazquez, J. F. (2012). Physical properties of cocoa butter/vegetable oil blends crystallized in a scraped surface heat exchanger. Journal of the American Oil Chemists' Society, 89(2), 199–209.

    Article  CAS  Google Scholar 

  • Phelan, J. A., O'Keeffe, A. M., Keogh, M. K. & Kelly, P. M. (1982). Studies of milk composition and its relationship to some processing criteria: 1. Seasonal changes in the composition of Irish milk. Irish Journal of Agricultural and Food Research, 6(1), 1–11.

    CAS  Google Scholar 

  • Pimpin, L., Wu, J. H. Y., Haskelberg, H., Del Gobbo, L. & Mozaffarian, D. (2016). Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS One, 11(6), e0158118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prins, A. (1986). Some aspects of aerated milk products. Netherlands Milk and Dairy Journal, 40, 203–215.

    Google Scholar 

  • Rohm, H. & Raaber, S. (1991). Hedonic spreadability optima of selected edible fats. Journal of Sensory Studies, 6(2), 81–88.

    Article  Google Scholar 

  • Rønholt, S., Kirkensgaard, J. J. K., Pedersen, T. B., Mortensen, K. & Knudsen, J. C. (2012). Polymorphism, microstructure and rheology of butter. Effects of cream heat treatment. Food Chemistry, 135, 1730–1739.

    Article  PubMed  CAS  Google Scholar 

  • Rønholt, S., Buldo, P., Mortensen, K., Andersen, U., Knudsen, J. C. & Wiking, L. (2014a). The effect of butter grains on physical properties of butter-like emulsions. Journal of Dairy Science, 97(4), 1929–1938.

    Article  PubMed  CAS  Google Scholar 

  • Rønholt, S., Kirkensgaard, J. J. K., Mortensen, K. & Knudsen, J. C. (2014b). Effect of cream cooling rate and water content on butter microstructure during four weeks of storage. Food Hydrocolloids, 34, 169–176.

    Article  CAS  Google Scholar 

  • Rønholt, S., Madsen, A. S., Kirkensgaard, J. J. K., Mortensen, K. & Knudsen, J. C. (2014c). Effect of churning temperature on water content, rheology, microstructure and stability of butter during four weeks of storage. Food Structure, 2(1–2), 14–26.

    Article  Google Scholar 

  • Rousseau, D., Zilnik, L., Khan, R. & Hodge, S. (2003). Dispersed phase destabilization in table spreads. Journal of the American Oil Chemists’ Society, 80(10), 957–961.

    Article  CAS  Google Scholar 

  • Schmidt, D. G. & van Hooydonk, A. C. M. (1980). A scanning electron microscopal investigation of the whipping of cream. Scanning Electron Microscopy, 3, 653–658.

    Google Scholar 

  • Shigematsu, H., Shibata, S., Kurata, T., Kato, H. & Fujimaki, M. (1977). Thermal degradation products of several Amadori compounds. Agricultural and Biological Chemistry, 41(12), 2377–2385.

    CAS  Google Scholar 

  • Smith, P. R. & Johansson, J. (2003). Influences of the proportion of solid fat in a shortening on loaf volume and staling of bread. Journal of Food Processing and Preservation, 28, 359–367.

    Article  Google Scholar 

  • Suryavanshi, M. V. & Ghosh, J. S. (2010). Spoilage of white unsalted butter by psychrophilic lipolysis of Pseudomonas aeruginosa NCIM 2036. British Journal of Dairy Sciences, 1(1), 26–29.

    CAS  Google Scholar 

  • Szakaly, S. & Schaffer, B. (1988). Structure of butter. II. Influence of technological modification of the liquid/solid fat ratio on butter consistency. Milchwissenschaft, 43, 561–564.

    Google Scholar 

  • Thomé, K. E. & Eriksson, G. (1973). The foaming properties of cream. 1. Substances in milk increasing the whippability of creams. Milchwissenschaft, 28, 554–558.

    Google Scholar 

  • Urbach, G. (1990). Effect of feed on flavor in dairy foods. Journal of Dairy Science, 73(12), 3639–3650.

    Article  Google Scholar 

  • Urbach, G. (1997). The flavour of milk and dairy products: II. Cheese: Contribution of volatile compounds. International Journal of Dairy Technology, 50(3), 79–89.

    Article  CAS  Google Scholar 

  • USDA. (2018). National nutrient database for standard reference. NDB1145. Butter, without salt. Washington, DC: Agricultural Research Service.

    Google Scholar 

  • Van Aken, G. A. & Visser, K. A. (2000). Firmness and crystallization of milk fat in relation to processing conditions. Journal of Dairy Science, 83, 1919–1932.

    Article  PubMed  Google Scholar 

  • van Boekel, M. A. J. S. (1998). Effect of heating on Maillard reactions in milk. Food Chemistry, 62(4), 403–414.

    Article  Google Scholar 

  • Viallon, C., Martin, B., Verdier-Metz, I., Pradel, P., Garel, J.-P., Coulon, J.-B. & Berdagué, J.-L. (2000). Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Lait, 80(6), 635–641.

    Google Scholar 

  • Voysey, P. A., Anslow, P. A., Bridgwater, K. J., Lavender, B. & Watson, L. (2009). The effects of butter characteristics on the growth of Listeria monocytogenes. International Journal of Dairy Technology, 62(3), 326–330.

    Article  Google Scholar 

  • Walstra, P., Wouters, J. T. M. & Geurts, T. J. (2006). Dairy science and technology. Boca Raton: CRC Press.

    Google Scholar 

  • Woo, A. H. & Lindsay, R. C. (1984). Characterization of lipase activity in cold-stored butter. Journal of Dairy Science, 67(6), 1194–1198.

    Article  CAS  Google Scholar 

References for Section 9.2

  • Abrahamsson, P., Frennborn, P., Dejmek, P. & Buchheim, W. (1988). Effects of homogenization and heating conditions on physico-chemical properties of coffee cream. Milchwissenschaft, 43, 762–765.

    Google Scholar 

  • Anderson, M. & Brooker, B. E. (1988). Dairy foams. In E. Dickinson & G. Stainsby (Eds.), Advances in food emulsions and foams (pp. 221–256). London: Elsevier Applied Science.

    Google Scholar 

  • Anderson, M., Brooker, B. E. & Needs, E. C. (1987). The role of proteins in the stabilization/destabilization of dairy foams. In E. Dickinson (Ed.), Food emulsions and foams (pp. 100–109). London: Royal Society of Chemistry.

    Google Scholar 

  • Banks, W. & Muir, D. D. (1988). Stability of alcohol-containing emulsions. In E. Dickinson & G. Stainsby (Eds.), Advances in food emulsions and foams (pp. 257–283). London: Elsevier Applied Science.

    Google Scholar 

  • Born, B. (2013). Cultured/sour cream. In R. C. Chandan & A. Kilara (Eds.), Manufacturing yogurt and fermented milks (2nd ed., pp. 381–391). Hoboken: Wiley.

    Chapter  Google Scholar 

  • Buchheim, W. (1991). Mikrostruktur von aufschlagbaren Emulsionen (Microstructure of whippable emulsions). Kieler Milchwirtschaftl. Forsch.ber, 43, 247–272.

    Google Scholar 

  • Buchheim, W. & Dejmek, P. (1997). Milk and dairy-type emulsions. In S. E. Friberg & K. Larsson (Eds.), Food emulsions (3rd ed., pp. 235–278). New York: Marcel Dekker.

    Google Scholar 

  • Buchheim, W., Falk, G. & Hinz, A. (1986). Ultrastructural aspects and physico-chemical properties of UHT-treated coffee cream. Food Microstructure, 5, 181–192.

    Google Scholar 

  • Castberg, H. B. (1992). Lipase activity (Bulletin 271) (pp. 18–20). Brussels: International Dairy Federation.

    Google Scholar 

  • Codex Alimentarius Commission. (2018). Standard for creams and prepared creams CXS 288–1976, last amended in 2018. www.codexalimentarius.org

  • Contarini, G. & Povolo, M. (2013). Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. International Journal of Molecular Sciences, 14(2), 2808–2831.

    Google Scholar 

  • Dickinson, E., Narhan, S. K. & Stainsby, G. (1989). Stability of alcohol-containing emulsions in relation to neck-plug formation in commercial cream liqueurs. Food Hydrocolloids, 3, 85–100.

    Article  CAS  Google Scholar 

  • Driessen, F. M. & van den Berg, M. G. (1992). Microbiological aspects of pasteurized cream (Bulletin 271) (pp. 4–10). Brussels: International Dairy Federation.

    Google Scholar 

  • Early, R. (1998). Liquid milk and cream. In R. Early (Ed.), The technology of dairy products (2nd ed., pp. 1–49). London: Blackie Academic & Professional.

    Google Scholar 

  • Eden, J., Dejmek, P., Löfgren, R., Paulsson, M. & Glantz, M. (2016). Native milk fat globule size and its influence on whipping properties. International Dairy Journal, 61, 176–181.

    Article  CAS  Google Scholar 

  • Eyer, H. K., Rattray, W. & Gallmann, P. U. (1996). The packaging of UHT-treated cream (Bulletin 315) (pp. 23–24). Brussels: International Dairy Federation.

    Google Scholar 

  • Frederick, E., Heyman, B., Moens, K., Fischer, S., Verwijlen, T., Moldenaers, P., van der Meeren, P. & Kewettinck, K. (2013a). Monoacylglycerols in dairy recombined cream: 2. The effect on partial coalescence and whipping properties. Food Research International, 51, 936–945.

    Article  CAS  Google Scholar 

  • Frederick, E., Moens, K., Heyman, B., Fischer, S., van der Meeren, P. & Kewettinck, K. (2013b). Monoacylglycerols in dairy recombined cream: 1. The effect of milk fat crystallization. Food Research International, 51, 892–898.

    Article  CAS  Google Scholar 

  • Geyer, S. & Kessler, H. G. (1989). Influence of individual milk constituents on coffee cream feathering in hot coffee. Milchwissenschaft, 44, 284–288.

    Google Scholar 

  • Goff, H. D. & Vega, C. (2007). Structure-emerging of ice-cream and foam-based foods. In D. J. McClements (Ed.), Understanding and controlling the microstructure of complex foods (pp. 557–574). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Gurnida, D. A, Rowan, A.M. Idjradinata, P., Muchtadi, D. and Sekarwana, N. (2012). Early Human Development, 88(8), 595–601.

    Google Scholar 

  • Han, J., Zhou, X., Cao, J., Sun, B., Li, Y. & Zhang, L. (2018). Microstructural evolution of whipped cream in whipping process observed by confocal laser scanning microscopy. International Journal of Food Properties, 21, 593–605.

    Article  Google Scholar 

  • Heffernan, S. P., Kelly, A. L. & Mulvihill, D. M. (2009). High-pressure homogenised cream liqueurs. Emulsification and stabilization efficiency. Journal of Food Engineering, 95, 525–531.

    Article  CAS  Google Scholar 

  • Heffernan, S. P., Kelly, A. L., Mulvihill, D. M., Lambrich, U. & Schuchmann, H. P. (2011). Efficiency of a range of homogenisation technologies in the emulsification and stabilization of cream liqueurs. Innovative Food Science and Emerging Technologies, 12, 628–634.

    Article  CAS  Google Scholar 

  • Hoffmann, W. (1999). Lagerstabilität von H-Schlagsahne (Storage stability of UHT whipping cream). Kieler Milchwirtschaftl. Forsch.ber, 51, 125–136.

    CAS  Google Scholar 

  • Hoffmann, W. (2004). Technology and quality of coffee cream. Eur. Dairy Magazine, 16(5), 41–42.

    Google Scholar 

  • Hoffmann, W. (2015a). Cream: Manufacture. Reference module in food sciences (pp. 1–8). Elsevier. https://doi.org/10.1016/B978-0-08-10056-5.00701-0.

  • Hoffmann, W. (2015b). Cream: Products. Reference module in food sciences (pp. 1–6). Elsevier. https://doi.org/10.1016/B978-0-08-10056-5.00702-2.

  • Hoffmann, W., Moltzen, B. & Buchheim, W. (1996). Photometric measurement of coffee cream stability in hot coffee solutions. Milchwissenschaft, 51, 191–194.

    CAS  Google Scholar 

  • Houlihan, A. V. (1992). Enzymatic activity other than lipase (Bulletin 271) (pp. 21–25). Brussels: International Dairy Federation.

    Google Scholar 

  • IDF (1992). Monograph on the pasteurization of cream (Bulletin 271). Brussels: International Dairy Federation.

    Google Scholar 

  • IDF (1996). UHT-Cream (Bulletin 315). Brussels: International Dairy Federation.

    Google Scholar 

  • Jacubzyk, E. & Niranjan, K. (2006). Transient development of whipped cream properties. Journal of Food Engineering, 77, 79–83.

    Article  Google Scholar 

  • Kessler, H. G. (2002). Food and bio process engineering – Dairy technology (pp. 385–424). München: A. Kessler.

    Google Scholar 

  • Kosinski, E. (1996). Raw material quality (Bulletin 315) (pp. 12–16). Brussels: International Dairy Federation.

    Google Scholar 

  • Kovácovà, R., Stetina, J. & Curda, L. (2010). Influence of processing and κ-carrageenan on properties of whipping cream. Journal of Food Engineering, 99, 471–478.

    Article  CAS  Google Scholar 

  • Lynch, A. G. & Mulvihill, D. M. (1997). Effect of sodium caseinate on the stability of cream liqueurs. International Journal of Dairy Technology, 50, 1–7.

    Article  CAS  Google Scholar 

  • MacGibbon, A. K. H. & Taylor, M. W. (2006). Composition and Structure of Bovine Milk Lipids. In: Fox P. F., McSweeney P. L. H. (eds) Advanced dairy chemistry volume 2 lipids (3rd ed., pp. 1–42). Springer, Boston, MA.

    Google Scholar 

  • Mezdour, S., Boyaval, P. & Korolzcuk, J. (2008). Solubility of αS1-, β- and κ-casein in water-ethanol solutions. Dairy Science Technology, 88, 313–325.

    Article  CAS  Google Scholar 

  • O’Kennedy, B. T., Cribbin, M. & Kelly, P. M. (2001). Stability of sodium caseinate to ethanol. Milchwissenschaft, 56, 680–684.

    Google Scholar 

  • Phan, T. T. Q., Moens, K., Le, T. T., van der Meeren, P. & Kewettinck, K. (2014). Potential of milk fat globule membrane enriched materials to improve the whipping properties of recombined cream. International Dairy Journal, 39, 16–23.

    Article  CAS  Google Scholar 

  • Precht, A., Peters, K.-H. & Petersen, J. (1988). Improvement of storage stability and foaming properties of cream by addition of carrageenan and milk constituents. Food Hydrocolloids, 2, 491–506.

    Article  Google Scholar 

  • Smiddy, M. A., Kelly, A. L. & Huppertz, T. (2009). Cream and related products. In A. Y. Tamime (Ed.), Dairy fats and related products (pp. 61–85). Oxford: Wiley Blackwell.

    Chapter  Google Scholar 

  • Smith, A. K., Goff, H. D. & Kakuda, Y. (2000). Microstructure and rheological properties of whipped cream as affected by heat treatment and addition of stabilizer. International Dairy Journal, 10, 295–301.

    Article  CAS  Google Scholar 

  • Towler, C. (1994). Developments in cream separation and processing. In R. K. Robinson (Ed.), Modern dairy technology (Vol. 1, 2nd ed., pp. 61–106). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Taylor, M. W. & MacGibbon, A. K. H. (2011). Milk Lipids: General Characteristics. In: Fuquay, J. W., Fox, P. F., McSweeney, P. L. H. (eds) Encyclopedia of dairy sciences (2nd ed., pp. 649–654). Academic Press. San Diego, CA.

    Google Scholar 

  • van Aken, G. A. (2001). Aeration of emulsions by whipping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 190, 333–354.

    Article  Google Scholar 

  • van Lent, K., Le, C. T., Vanlerberghe, B. & van der Meeren, P. (2008). Effect of formulation on the emulsion and whipping properties of recombined dairy cream. International Dairy Journal, 18, 1003–1010.

    Article  CAS  Google Scholar 

  • Walstra, P., Geurts, T. J., Noomen, A., Jellema, A. & van Boekel, M. A. J. S. (1999). Dairy technology. New York: Marcel Dekker.

    Book  Google Scholar 

  • Westermann, S., MØller, J. K. S. & Skibsted, L. H. (2009). Effect of light exposure on radical formation in dairy cream during subsequent dark storage. Milchwissenschaft, 64, 51–55.

    CAS  Google Scholar 

  • Wijnen, M. E. (1997). Instant foam physics: Formation and stability of aerosol whipped creams. PhD thesis, Wageningen Agricultural University, Wageningen.

    Google Scholar 

References for Section 9.3

  • Barden, L., Osborne, J., McMahon, D. J. & Foegeding, E. A. (2015). Investigating the filled gel model in Cheddar cheese through use of Sephadex beads. Journal of Dairy Science, 98, 1502–1516.

    Article  CAS  PubMed  Google Scholar 

  • Carunchia Whetstine, M. E., Drake, M. A., Nelson, B. K. & Barbano, D. (2006). Flavor profiles of full fat, reduced fat and cheese fat made from aged Cheddar with the fat removed using a novel process. Journal of Dairy Science, 89, 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Childs, J. L. & Drake, M. A. (2009). Consumer perception of fat reduction in cheese. Journal of Sensory Studies, 24, 02–921.

    Article  Google Scholar 

  • Collins, Y. F., McSweeney, P. L. H. & Wilkinson, M. G. (2003). Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. International Dairy Journal, 13, 841–866.

    Article  CAS  Google Scholar 

  • Drake, M. A., Miracle, R. E. & McMahon, D. J. (2010). Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses. Journal of Dairy Science, 93, 5069–5081.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M. E., Kapoor, R., McMahon, D. J., McCoy, D. R. & Narasimmon, R. G. (2009). Reduction of sodium and fat levels in natural and processed cheeses: Scientific and technological aspects. Comprehensive Reviews in Food Science and Food Safety, 8(3), 252–268.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., Camier, B. & Gassi, J. Y. (2006). Milk fat thermal properties and solid fat content in Emmental cheese: A differential scanning calorimetry study. Journal of Dairy Science, 89, 2894–2910.

    Article  CAS  PubMed  Google Scholar 

  • Lucey, J. A., Johnson, M. E. & Horne, D. S. (2003). Perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science, 86, 2725–2743.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, D. J., Motawee, M. M. & McManus, W. R. (2009). Influence of brine concentration and temperature on composition, microstructure, and yield of feta cheese. Journal of Dairy Science, 92 (9), 4169–4179.

    Google Scholar 

  • McMahon, D. J. (2010). Issues with lower fat and lower salt cheeses. Australian Journal of Dairy Technology, 65, 200–205.

    CAS  Google Scholar 

  • McMahon, D. J. & Oberg, C. J. (2011). Cheese: Pasta-filata cheeses: Low-moisture part-skim Mozzarella (Pizza cheese). In J. W. Fuquay, P. F. Fox & P. L. H. McSweeney (Eds.), Encyclopedia of dairy sciences (Vol. 1, 2nd ed., pp. 737–744). San Diego: Academic.

    Chapter  Google Scholar 

  • McMahon, D. J. & Oberg, C. J. (2017). Pasta-filata cheese. In Cheese Technology and Major Cheese Groups, P. F. Fox, P. L. H. McSweeney, P. Cotter & D. W. Everett (Eds.), Cheese: Chemistry physics and microbiology (Vol. 2, 4th ed., pp. 1041–1068). London: Elsevier Publishers.

    Chapter  Google Scholar 

  • McMahon, D. J., Fife, R. L. & Oberg, C. J. (1999). Water partitioning in Mozzarella cheese and its relationship to cheese meltability. Journal of Dairy Science, 82, 1361–1369.

    Article  CAS  Google Scholar 

  • McMahon, D. J., Oberg, C. J., Drake, M. A., Farkye, N., Moyes, L. V., Arnold, M. R., Ganesan, B., Steele, J. & Broadbent, J. R. (2014). Effect of sodium, potassium, magnesium, and calcium salt cations on pH, proteolysis, organic acids, and microbial populations during storage of full fat Cheddar cheese. Journal of Dairy Science, 97, 4780–4798.

    Article  CAS  PubMed  Google Scholar 

  • Merrill, R. K., Oberg, C. J. & McMahon, D. J. (1994). A method for manufacturing reduced fat Mozzarella cheese. Journal of Dairy Science, 77, 1783–1789.

    Article  CAS  Google Scholar 

  • Merrill, R. K., Oberg, C. J., McManus, W. R., Kalab, M. & McMahon, D. J. (1996). Microstructure and physical properties of a reduced fat Mozzarella cheese made using Lactobacillus casei adjunct culture. LWT – Food Science and Technology, 29, 721–728.

    Article  CAS  Google Scholar 

  • Milo, C. & Reineccius, G. A. (1997). Identification and quantification of potent odorants in regular fat and low fat mild Cheddar cheese. Journal of Agricultural and Food Chemistry, 45, 3590–3594.

    Article  CAS  Google Scholar 

  • Mulvaney, S., Rong, S., Barbano, D. M. & Yun, J. J. (1997). Systems analysis of the plastization and extrusion processing of Mozzarella cheese. Journal of Dairy Science, 80, 3030–3039.

    Article  CAS  Google Scholar 

  • Oberg, C. J., McManus, W. R. & McMahon, D. J. (1993). Microstructure of Mozzarella cheese during manufacture. Journal of Food Structure, 12, 251–258.

    Google Scholar 

  • Oberg, E. N., Oberg, C. J., Motawee, M. M., Martini, S. & McMahon, D. J. (2015). Increasing stringiness of low-fat Mozzarella string cheese using polysaccharides. Journal of Dairy Science, 98, 243–4254.

    Article  CAS  Google Scholar 

  • Pastorino, A. J., Dave, R. I., Oberg, C. J. & McMahon, D. J. (2002). Temperature effect on structure-opacity relationships of nonfat Mozzarella cheese. Journal of Dairy Science, 85, 2106–2113.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, N. R., Drake, M. A., Daubert, C. R., McMahon, D. J., Bletch, T. K. & Foegeding, E. A. (2009). The effect of aging on low-fat, reduced-fat, and full-fat Cheddar cheese texture. Journal of Dairy Science, 92, 4756–4772.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, N. R., McMahon, D. J., Daubert, C. R., Berry, T. K. & Foegeding, E. A. (2010). Rheological properties and microstructure of Cheddar cheese made with different fat contents. Journal of Dairy Science, 93, 4565–4576.

    Article  CAS  PubMed  Google Scholar 

  • Rudan, M. A. & Barbano, D. M. (1998). A model of Mozzarella cheese melting and browning during pizza baking. Journal of Dairy Science, 81, 2312–2319.

    Article  CAS  Google Scholar 

  • Sipahioglu, O., Alvarez, V. B. & Solano-Lopez, C. (1999). Structure, physico-chemical and sensory properties of Feta cheese made with tapioca starch and lecithin as fat mimetics. International Dairy Journal, 9, 783–789.

    Article  CAS  Google Scholar 

  • Wadhwani, R., McManus, W. R. & McMahon, D. J. (2011). Improvement in melting and baking properties of low fat Mozzarella cheese. Journal of Dairy Science, 94, 1713–1723.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani, R., McManus, W. R. & McMahon, D. J. (2012). Color of low-fat cheese influences flavor perception and consumer liking. Journal of Dairy Science, 95, 2336–2346.

    Article  CAS  PubMed  Google Scholar 

References for Section 9.4

  • Adleman, R. & Hartel, R. W. (2002). Lipid crystallization and its effect on the physical structure of ice cream. In N. Garti & K. Sato (Eds.), Crystallization processes in fats and lipid systems (pp. 381–427). New York: Marcel Dekker.

    Google Scholar 

  • Amador, J., Hartel, R. W. & Rankin, S. (2017). The effects of fat structures and ice cream mix viscosity on physical and sensory properties of ice cream. Journal of Food Science, 82, 1851–1860.

    Article  CAS  PubMed  Google Scholar 

  • Barfod, N. M. (2001). The emulsifier effect. Dairy Industries International, 66, 32–33.

    Google Scholar 

  • Biasutti, M., Venir, E., Marino, M., Maifreni, M. & Innocente, N. (2013). Effects of high pressure homogenization of ice cream mix on the physical and structural properties of ice cream. International Dairy Journal, 32, 40–45.

    Article  CAS  Google Scholar 

  • Bolliger, S., Goff, H. D. & Tharp, B. W. (2000a). Correlation between colloidal properties of ice cream mix and ice cream. International Dairy Journal, 10, 303–309.

    Article  CAS  Google Scholar 

  • Bolliger, S., Kornbrust, B., Goff, H. D., Tharp, B. W. & Windhab, E. J. (2000b). Influence of emulsifiers on ice cream produced by conventional freezing and low temperature extrusion processing. International Dairy Journal, 10, 497–504.

    Article  Google Scholar 

  • Clarke, C. (2012). The science of ice cream (2nd ed.). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Davies, E., Dickinson, E. & Bee, R. D. (2000). Shear stability of sodium caseinate emulsions containing monoglyceride and triglyceride crystals. Food Hydrocolloids, 14, 145–153.

    Article  CAS  Google Scholar 

  • Davies, E., Dickinson, E. & Bee, R. D. (2001). Orthokinetic destabilization of emulsions by saturated and unsaturated monoglycerides. International Dairy Journal, 11, 827–836.

    Article  CAS  Google Scholar 

  • Daw, E. & Hartel, R. W. (2015). Fat destabilization and melt-down of ice creams with increased protein content. International Dairy Journal, 43, 33–41.

    Article  CAS  Google Scholar 

  • Goff, H. D. (2002). Formation and stabilization of structure in ice cream and related products. Current Opinion in Colloid & Interface Science, 7, 432–437.

    Article  CAS  Google Scholar 

  • Goff, H. D. (2016). Milk proteins in ice cream. In P. L. H. McSweeney & J. A. O’Mahony (Eds.), Advanced dairy chemistry – 1B. Proteins. Applied aspects (4th ed., pp. 329–345). New York: Springer.

    Google Scholar 

  • Goff, H. D. & Hartel, R. W. (2013). Ice Cream (7th ed.). New York: Springer.

    Book  Google Scholar 

  • Goff, H. D., Verespej, E. & Smith, A. K. (1999). A study of fat and air structures in ice cream. International Dairy Journal, 9, 817–829.

    Article  CAS  Google Scholar 

  • Hayes, M. G., Lefrancois, A. C., Waldron, D. S., Goff, H. D. & Kelly, A. L. (2003). Influence of high pressure homogenisation on some characteristics of ice cream. Milchwissenschaft, 58, 519–523.

    Google Scholar 

  • Hyvonen, L., Linna, M., Tuorila, H. & Dijksterhuis, G. (2003). Perception of melting and flavor release of ice cream containing different types and contents of fat. Journal of Dairy Science, 86, 1130–1138.

    Article  CAS  PubMed  Google Scholar 

  • Kokubo, S., Sakurai, K., Hakamata, K., Tomita, M. & Yoshida, S. (1996). The effect of manufacturing conditions on the de-emulsification of fat globules in ice cream. Milchwissenschaft, 51, 262–265.

    CAS  Google Scholar 

  • Kokubo, S., Sakurai, K., Iwaki, S., Tomita, M. & Yoshida, S. (1998). Agglomeration of fat globules during the freezing process of ice cream manufacturing. Milchwissenschaft, 53, 206–209.

    CAS  Google Scholar 

  • Koxholt, M. M. R., Eisenmann, B. & Hinrichs, J. (2001). Effect of the fat globule sizes on the meltdown of ice cream. Journal of Dairy Science, 84, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Velasco, C. & Goff, H. D. (2011). Enhancement of fat colloidal interactions for the preparation of ice creams high in unsaturated fat. International Dairy Journal, 21, 540–547.

    Article  CAS  Google Scholar 

  • Mendez-Velasco, C. & Goff, H. D. (2012a). Fat structure in ice cream: A study on the types of fat interactions. Food Hydrocolloids, 29, 152–159.

    Article  CAS  Google Scholar 

  • Mendez-Velasco, C. & Goff, H. D. (2012b). Fat structures as affected by unsaturated or saturated monoglyceride and their effect on ice cream structure, texture and stability. International Dairy Journal, 24, 33–39.

    Article  CAS  Google Scholar 

  • Muse, M. R. & Hartel, R. W. (2004). Ice cream structural elements that affect melting rate and hardness. Journal of Dairy Science, 87, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Relkin, P., Sourdet, S. & Fosseux, P.-Y. (2003). Fat crystallization in complex food emulsions: Effects of adsorbed milk proteins and of a whipping process. Journal of Thermal Analysis and Calorimetry, 71, 187–195.

    Article  CAS  Google Scholar 

  • Roland, A. M., Phillips, L. G. & Boor, K. J. (1999). Effects of fat content on the sensory properties, melting, colour, and hardness of ice cream. Journal of Dairy Science, 82, 32–38.

    Article  CAS  Google Scholar 

  • Rolon, M. L., Bakke, A. J., Coupland, J. N., Hayes, J. E. & Roberts, R. F. (2017). Effect of fat content on the physical properties and consumer acceptability of vanilla ice cream. Journal of Dairy Science, 100, 5217–5227.

    Article  CAS  PubMed  Google Scholar 

  • Ruger, P. R., Baer, R. J. & Kasperson, K. M. (2002). Effect of double homogenization and whey protein concentrate on the texture of ice cream. Journal of Dairy Science, 85, 1684–1692.

    Article  CAS  PubMed  Google Scholar 

  • Sofjan, R. P. & Hartel, R. W. (2004). Effects of overrun on structural and physical properties of ice cream. International Dairy Journal, 14, 255–262.

    Article  Google Scholar 

  • Soukoulis, C. & Fisk, I. (2016). Innovative ingredients and emerging technologies for controlling ice recrystallization, texture, and structure stability in frozen dairy desserts: A review. Critical Reviews in Food Science and Nutrition, 56, 2543–2559.

    Article  CAS  PubMed  Google Scholar 

  • Sourdet, S., Relkin, P., Fosseux, P.-Y. & Aubry, V. (2002). Composition of fat protein layer in complex food emulsions at various weight ratios of casein-to-whey proteins. Lait, 80, 567–580.

    Article  CAS  Google Scholar 

  • Sourdet, S., Relkin, P. & Cesar, B. (2003). Effects of milk protein type and pre-heating on physical stability of whipped and frozen emulsions. Colloids and Surfaces, B: Biointerfaces, 31, 55–64.

    Article  CAS  Google Scholar 

  • Sung, K. K. & Goff, H. D. (2010). Effect of solid fat content on structure in ice creams containing palm kernel oil and high oleic sunflower oil. Journal of Food Science, 75, C274–C279.

    Article  CAS  PubMed  Google Scholar 

  • Tekin, E., Sahin, S. & Sumnu, G. (2017). Physicochemical, rheological and sensory properties of low-fat ice cream designed by double emulsions. European Journal of Lipid Science and Technology, 119(1–9), 1600505.

    Article  CAS  Google Scholar 

  • Warren, M. M. & Hartel, R. W. (2018). Effects of emulsifier, overrun and dasher speed on ice cream microstructure and melting properties. Journal of Food Science, 83, 639–647.

    Article  CAS  PubMed  Google Scholar 

  • Xinyi, E., Pei, Z. J. & Schmidt, K. A. (2010). Ice cream: Foam formation and stabilization – A review. Food Review International, 26, 122–137.

    Article  CAS  Google Scholar 

  • Zhang, Z. & Goff, H. D. (2004). Protein distribution at air interfaces in dairy foams and ice cream as affected by casein dissociation and emulsifiers. International Dairy Journal, 14, 647–657.

    Article  CAS  Google Scholar 

  • Zhang, Z. & Goff, H. D. (2005). On fat destabilization and composition of the air interface in ice cream containing saturated and unsaturated monoglyceride. International Dairy Journal, 15, 495–500.

    Article  CAS  Google Scholar 

  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K. & Goff, H. D. (2013a). Development of formulations and processes to incorporate wax oleogels in ice cream. Journal of Food Science, 78, C1845–C1851.

    Article  CAS  PubMed  Google Scholar 

  • Zulim Botega, D. C., Marangoni, A. G., Smith, A. K. & Goff, H. D. (2013b). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78, C1334–C1339.

    Article  CAS  PubMed  Google Scholar 

References for Section 9.5

  • Buma, T. J. (1971a). Free fat in spray-dried whole milk. 4. Significance of free fat for other properties of practical importance. Netherlands Milk Dairy Journal, 25, 88–106.

    CAS  Google Scholar 

  • Buma, T. J. (1971b). Free fat in spray-dried whole milk. 5. Cohesion. Determination, influence of particle size, moisture content and free-fat content. Netherlands Milk Dairy Journal, 25, 107–122.

    CAS  Google Scholar 

  • Buma, T. J. (1971c). Free fat in spray-dried whole milk. 8. The relation between free-fat content and particle porosity of spray-dried whole milk. Netherlands Milk Dairy Journal, 25, 123–104.

    CAS  Google Scholar 

  • Buma, T. J. (1971d). Free fat in spray-dried whole milk. 10. A final report with a physical model for free fat in spray-dried milk. Netherlands Milk Dairy Journal, 25, 159–174.

    Google Scholar 

  • Crowley, S. V., Gazi, I., Kelly, A. L., Huppertz, T. & O’Mahony, J. A. (2014). Influence of protein concentration on the physical characteristics and flow properties of milk protein concentrate powders. Journal of Food Engineering, 135, 31–38.

    Article  CAS  Google Scholar 

  • Fitzpatrick, J. J., Iqbal, T., Delaney, C., Twomey, T. & Keogh. (2004). Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. Journal of Food Engineering, 64, 435–444.

    Article  Google Scholar 

  • Foerster, M., Gengenbach, T., Woo, M. W. & Selomulya, C. (2016). The impact of atomization on the surface composition of spray-dried milk droplets. Colloids and Surfaces. B, Biointerfaces, 140, 460–471.

    Article  CAS  PubMed  Google Scholar 

  • Foerster, M., Liu, C., Gengenbach, T., Woo, M. W. & Selomulya, C. (2017). Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenan. Food Hydrocolloids, 70, 163–180.

    Article  CAS  Google Scholar 

  • Fox, P. F. & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry. London: Blackie Academic & Professional.

    Google Scholar 

  • Gaiani, C., Schuck, P., Scher, J., Ehrhardt, J. J., Arab-Tehrany, E., Jacquot, M. & Banon, S. (2009). Native phosphocaseinate powder during storage: Lipids released onto the surface. Journal of Food Engineering, 94, 130–134.

    Article  CAS  Google Scholar 

  • Kelly, G. M., O’Mahony, J. A., Kelly, A. L. & O’Callaghan, D. J. (2014). Physical characteristics of spray-dried dairy powders containing different vegetable oils. Journal of Food Engineering, 122, 122–129.

    Article  CAS  Google Scholar 

  • Keogh, K. & Twomey, M. (2002). Effect of milk composition on spray-dried high-fat milk powders and their use in chocolate. Lait, 82, 531–539.

    Article  Google Scholar 

  • Kim, E. H.-J., Chen, X. D. & Pearce, D. (2005). Effect of surface composition on the flowability of industrial spray-dried dairy powders. Colloids and Surfaces. B, Biointerfaces, 46, 182–187.

    Article  CAS  PubMed  Google Scholar 

  • Liang, B. & Hartel, R. W. (2004). Effects of milk powders in milk chocolate. Journal of Dairy Science, 87, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodani, F., Perera, C. O., Abernethy, G., Fedrizzi, B. & Chen, H. (2018). Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage. Food Chemistry, 261, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, W. R., Forny, L., Althaus, T., Niederreiter, G., Palzer, S., Hounslow, M. J. & Salman, A. D. (2019). Surface tension-driven effects in the reconstitution of food powders. Chemical Engineering Research and Design, 146, 464–469.

    Article  CAS  Google Scholar 

  • Skanderby, M., Westergaard, V., Partridge, A. & Muir, D. D. (2009). Dried milk products. In A. Y. Tamine (Ed.), Dairy powders and concentrated products (pp. 180–234). West Sussex: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Vega, C. & Roos, Y. H. (2006). Invited review: Spray-dried dairy and dairy-like emulsions – Compositional considerations. Journal of Dairy Science, 89, 383–401.

    Article  CAS  PubMed  Google Scholar 

  • Vignolles, M.-L., Jeantet, R., Lopez, C. & Schuck, P. (2007). Free fat, surface fat and dairy powders: Interactions between process and product. A review. Lait, 87, 187–236.

    Article  CAS  Google Scholar 

References for Section 9.6

  • Armand, M., Pasquier, B., Andre, M., Borel, P., Senft, M., Peyrot, J., Salducci, J., Portugal, H., Jaussan, V. & lairon, D. (1999). Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. American Journal of Clinical Nutrition, 70, 1096–1106.

    Article  CAS  PubMed  Google Scholar 

  • Baars, A., Oosting, A., Engels, E., Kegler, D., Kodde, A., Schipper, L., Verkade, H. J. & van der Beek, E. M. (2016). Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. British Journal of Nutrition, 115, 1930–1937.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yoseph, F., Lifshitz, Y. & Cohen, T. (2013). Review of sn-2 palmitate oil implications for infant health. Prostaglandins Leukot. Essent Fatty Acids, 89, 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner, S., van de Heijning, B. J. M., Acton, D. & Mensisk, R. P. (2017). Infant milk fat droplet size and coating effect postprandial responses in healthy adult men: A proof-of-concept study. European Journal of Clinical Nutrition, 71, 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  • Béghin, L., Marchandise, X., Lien, E., Bricout, M., Bernet, J.-P., Lienhardt, J.-F., Jeannerot, F., Menet, V., Requillart, J.-C., Marx, J., De Groot, N., Jaeger, J., Steenhout, P. & Turck, D. (2018). Growth, stool consistency and bone mineral content in healthy term infants fed sn-2-palmitate-enriched starter infant formula: A randomized, double-blind, multicentre clinical trial. Clinical Nutrition, 38, 1023–1030. https://doi.org/10.1016/j.clnu.2018.05.015.

    Article  CAS  PubMed  Google Scholar 

  • Byrdwell, W. C. & Perry, R. H. (2007). Liquid chromatography with dual parallel mass spectrometry and 31P nuclear magnetic resonance spectroscopy for analysis of sphingomyelin and dihydrosphingomyelin II. Bovine milk sphingolipids. Journal of Chromatography A, 1146, 64–185.

    Article  CAS  Google Scholar 

  • Carlson, S. E., Cooke, R. J., Werkman, S. H. & Tolley, E. A. (1992). First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids, 27, 901–907.

    Article  CAS  PubMed  Google Scholar 

  • Carver, J. D. (2003). Advances in nutritional modifications of infant formulas. American Journal of Clinical Nutrition, 77, 1550S–1554S.

    Article  CAS  PubMed  Google Scholar 

  • Codex Alimentarius. (2016). Standard for infant formula and formulas for special medical purposes intended for infants. Codex Stan, 72–1981. Revision: 2007.

    Google Scholar 

  • Eggersdorfer, M. & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26.

    Article  CAS  PubMed  Google Scholar 

  • European Food Safety Authority (2014). Scientific opinion on the essential composition of infant and follow-on formulae. EFSA Journal, 12, 3760.

    Article  CAS  Google Scholar 

  • FAO (2010). Fats and fatty acids in human nutrition – Report of an expert consultation. FAO Food and Nutrition Paper, 91, 63–76.

    Google Scholar 

  • Garcia, C. & Innis, S. (2013). Structure of the human milk fat globule. Lipid Technology, 25, 223–226.

    Article  CAS  Google Scholar 

  • Garcia, C., Lutz, N., Confort-Gouny, S., Cozzone, P., Armand, M. & Bernard, M. (2012). Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chemistry, 135, 1777–1783.

    Article  CAS  PubMed  Google Scholar 

  • Gerstenberger, H. J. & Ruh, H. O. (1919). Studies in the adaptation of an artificial food to human milk. II: A report of three years clinical experience with the feeding of SMA. American Journal of Diseases of Children, 171, 1–9.

    Google Scholar 

  • Gianni, M. L., Roggero, P., Baudry, C., Fressange-Mazda, C., le Ruyet, P. & Mosca, F. (2018). No effect of adding dairy lipids or long chain polyunsaturated fatty acids on formula tolerance and growth in full tern infants: A randomized controlled trial. BMC Pediatrics, 18, 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giuffrida, F., Masserey-Elmelegy, I., Thakkar, S. K., Marmet, C. & Destaillats, F. (2014). Longitudinal evolution of the concentration of gangliosides GM3 and GD3 in human milk. Lipids, 49, 997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuffrida, F., Cruz-Hernandez, C., Bertschy, E., Fontannaz, P., Masserey-Elmelegy, I., Tavazzi, I., Marmet, C., Sanchez-Bridge, B., Thakkar, S. K., De Castro, C. A., Vynes-Pares, G., Zhang, Y. & Wang, P. (2016). Temporal changes of human breast milk lipids of Chinese mothers. Nutrients, 8, 715.

    Article  PubMed Central  CAS  Google Scholar 

  • Hadley, K. B., Ryan, A. S., Forsyth, S., Gautier, S. & Salem, N., Jr. (2016). The essentiality of arachidonic acid in infant development. Nutrients, 8, 216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hageman, J. H. J., Danielsen, M., Nieuwenhuizen, A. G., Feitsma, A. L. & Dalsgaard, T. K. (2019). Comparison of bovine milk fat and vegetable fat for infant formulae: Implications for infant health. International Dairy Journal, 92, 37–49.

    Article  CAS  Google Scholar 

  • Innis, S. M. (2011). Dietary triacylglycerol structure and its role in infant nutrition. Advances in Nutrition, 2, 275–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innis, S. M. (2016). Palmitic acid in early human development. Critical Reviews of Food Science and Nutrition, 56 (12), 1952–1959.

    Google Scholar 

  • Jensen, R. (1996). The lipids in human milk. Progress in Lipid Research, 35, 53–92.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. G. (1999). Lipids in human milk. Lipids, 34, 1243–1271.

    Article  CAS  PubMed  Google Scholar 

  • Karupaiah, T. & Sundram, K. (2007). Effects of sterospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutrition, Metabolism, 4, 16.

    Article  Google Scholar 

  • Lauritzen, L., Bambilla, P., Mazzocchi, A., Harsløf, L. B. S., Ciappolino, V. & Agostoni, C. (2016). DHA effects in brain development and function. Nutrients, 8, 6.

    Article  PubMed Central  CAS  Google Scholar 

  • Le Huërou-Luron, I., Bouzerzour, K., Ferret-Bernard, S., Ménard, O., Le Normand, L., Perrier, C., Le Bourgot, C., Jardin, J., Bourlieu, C., Carton, T., Le Ruyet, P., Cuinet, I., Bonhomme, C. & Dupont, D. (2018). A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal pigs. European Journal of Nutrition, 57, 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Lindmark Månsson, H. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research, 52. https://doi.org/10.3402/fnr.v52i0.1821

  • Lipkie, T. E., Morrow, A. L., Jouni, Z. E., McMahon, R. J. & Ferruzzi, M. G. (2015). Longitudinal survey of carotenoids in human milk from urban cohorts in China, Mexico and the USA. PLoS One, 10, e0127729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Z., Rochfort, S. & Cocks, B. (2018). Milk lipidomics: What we know and what we don’t. Progress in Lipid Research, 71, 70–85.

    Article  CAS  PubMed  Google Scholar 

  • Mackey, A. D., Albrecht, D., Oliver, J., Williams, T., Long, A. C. & Price, P. T. (2012). Plasma carotenoid concentrations of infants are increased by feeding a milk-based infant formula supplemented with carotenoids. Journal of the Science of Food and Agriculture, 93, 1945–1952.

    Article  PubMed  CAS  Google Scholar 

  • Mather, I. H. (2011). Milk fat globule membrane. In J. W. Fuquay, P. F. Fox & P. L. H. McSweeney (Eds.), Encyclopedia of dairy sciences (Vol. 3, 2nd ed., pp. 680–690). Oxford: Academic.

    Chapter  Google Scholar 

  • Michalski, M. C., Soares, A. F., Lopez, C., Leconte, N., Briard, V. & Geloen, A. (2006). The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. European Journal of Nutrition, 45, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Moloney, C., Walshe, E., Phelan, M., Giuffrida, F., Badoud, F., Bertschy, E. & O’Regan, J. (2018). Sphingomyelin content of dairy protein ingredients and infant formula powders, and identification of bovine sphingomyelin species. International Dairy Journal, 78, 138–144.

    Article  CAS  Google Scholar 

  • Mortensen, B. K. (2011). Anhydrous milk fat/butter oil and ghee. In J. W. Fuquay, P. F. Fox & P. L. H. McSweeney (Eds.), Encyclopedia of dairy sciences (Vol. 1, 2nd ed., pp. 515–521). Oxford: Academic.

    Chapter  Google Scholar 

  • Nelson, S. E., Rogers, R. R., Frantz, J. A. & Ziegler, E. E. (1996). Palm olein in infant formula: Absorption of fat and minerals by normal infants. American Journal of Clinical Nutrition, 64, 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, A. (2016). Role of sphingolipids in infant gut health and immunity. Journal of Pediatrics, 173S, S53–S59.

    Article  CAS  Google Scholar 

  • Ohlsson, L. (2010). Dairy products and plasma cholesterol levels. Food & Nutrition Research, 54, 5124.

    Article  CAS  Google Scholar 

  • Oosting, A., Kegler, D., Wopereis, H. J., Teller, I. C., van de Heijning, B. J., Verkade, H. J. & van der Beek, E. M. (2012). Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatric Research, 72, 362–369.

    Article  CAS  PubMed  Google Scholar 

  • Pfrieger, F. W. (2003). Cholesterol homeostasis and function in neurons of the central nervous system. Cellular and Molecular Life Sciences, 60, 1158–1171.

    Article  CAS  PubMed  Google Scholar 

  • Rueda, R. (2007). The role of dietary gangliosides on immunity and the prevention of infection. British Journal of Nutrition, 98, S68–S73.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, E. E., Patrick, T. E. & Pickler, R. (2009). A history of infant feeding. Journal of Perinatal Education, 18, 32–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka, K., Hosozawa, M., Kudo, N., Yoshikawa, N., Hisata, K., Shoji, H., Shinohara, H. & Shimizu, T. (2013). The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioral development of very low birth weight infants during infancy, randomised control trial. Brain & Development Journal, 35, 45–52.

    Article  CAS  Google Scholar 

  • Timby, N., Domellöf, E., Hernell, O., Lönnerdal, B. & Domellöf, M. (2014a). Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. American Journal of Clinical Nutrition, 99, 860–868.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Lönnerdal, B., Hernell, O. & Domellöf, M. (2014b). Cardiovascular risk factors until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membrane. Pediatric Research, 76, 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Hernell, O., Vaarala, O., Merlin, M., Lönnerdal, B. & Domellöf, M. (2015). Infections in infants fed formula supplemented with bovine milk fat globule membranes. Journal of Pediatric Gastroenterology and Nutrition, 60, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Tzompa-Sosa, D. A., van Aken, G. A., van Hooijdonk, A. C. M. & van Valenberg, H. J. F. (2014). Influence of C16:0 and long-chain saturated fatty acids on normal variation of bovine milk fat triacylglycerol structure. Journal of Dairy Science, 97, 4542–4551.

    Article  CAS  PubMed  Google Scholar 

  • Van Meer, G., Voelker, D. R. & Feigenson, G. W. (2008). Membrane lipids: Where they are and how they behave. Nature Reviews. Molecular Cell Biology, 9, 112–124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilbey, R. A. (2011). Homogenisation of milk – Principles and mechanisms of homogenisation, effects and assessment of efficiency: Valve homogenisers. In J. W. Fuquay, P. F. Fox & P. L. H. McSweeney (Eds.), Encyclopedia of dairy sciences (Vol. 2, 2nd ed., pp. 750–754). Oxford: Academic.

    Chapter  Google Scholar 

  • Yao, M., Lien, E. L., Capeding, M. R. Z., Fitzgerald, M., Ramanujam, K., Yuhas, R., Northington, R., Lebumfacil, J., Wang, L. & DeRusso, P. A. (2014). Effects of term infant formulas containing high sn-2 palmitate with and without oligofructose on stool composition, stool characteristics and bifidogenicity. Journal of Pediatric Gastroenterology and Nutrition, 59, 440–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuhas, R., Pramuk, K. & Lien, E. L. (2006). Human milk fatty acid composition from nine countries varies most in DHA. Lipids, 41, 851–858.

    Article  CAS  PubMed  Google Scholar 

  • Zielińska, M. A., Wesoƚowska, A., Pawlus, B. & Hamuƚka, J. (2017). Health effects of carotenoids during pregnancy and lactation. Nutrients, 9, 838.

    Article  PubMed Central  CAS  Google Scholar 

  • Zou, L., Pande, G. & Akoh, C. C. (2016). Infant formula fat analogs and human milk fat: New focus on infant developmental needs. Annual Review of Food Science and Technology, 7, 139–165.

    Article  CAS  PubMed  Google Scholar 

References for Section 9.7

  • Afoakwa, E. O., Paterson, A. & Fowler, M. (2007). Factors influencing rheological and textural qualities in chocolate – A review. Trends in Food Science and Technology, 18, 290–298.

    Article  CAS  Google Scholar 

  • Afoakwa, E. O., Paterson, A., Fowler, M. & Vieira, J. (2009). Influence of tempering and fat crystallization behaviours on microstructural and melting properties in dark chocolate systems. Food Research International, 42, 200–209.

    Article  CAS  Google Scholar 

  • Aguilar, C. A. & Ziegler, G. R. (1994). Physical and microscopic characterization of dry whole milk with altered lactose content. 1. Effect of lactose concentration. Journal of Dairy Science, 77, 1189–1197.

    Google Scholar 

  • Aguilera, J. M., Michel, M. & Mayor, G. (2004). Fat migration in chocolate: Diffusion or capillary flow in a particulate solid? – A hypothesis paper. Journal of Food Science, 69, R167–R174.

    Article  CAS  Google Scholar 

  • Alamprese, C., Datei, L. & Semeraro, Q. (2007). Optimization of processing parameters of a ball mill refiner for chocolate. Journal of Food Engineering, 83, 629–636.

    Article  Google Scholar 

  • Altimiras, P., Pyle, L. & Bouchon, P. (2007). Structure-fat migration relationships during storage of cocoa butter model bars: Bloom development and possible mechanisms. Journal of Food Engineering, 80, 600–610.

    Article  Google Scholar 

  • Barna, C. M., Hartel, R. W. & Metin, S. (1992). Incorporation of milk-fat fractions into milk chocolate. Manufacturing Confectioner, 72, 107–116.

    Google Scholar 

  • Beckett, S. T. (2003). Is the taste of British milk chocolate different? International Journal of Dairy Technology, 56, 139–142.

    Article  Google Scholar 

  • Beckett, S. T. (2008). The science of chocolate (2nd ed.). London: Royal Society of Chemistry.

    Google Scholar 

  • Beckett, S. T. (2017). Traditional chocolate making. In S. T. Beckett, M. S. Fowler & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (5th ed., pp. 1–8). New York: Wiley.

    Chapter  Google Scholar 

  • Beckett, S. T., Paggios, K. & Roberts, I. (2017). Conching. In S. T. Beckett, M. S. Fowler & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (5th ed., pp. 241–297). Oxford: Wiley.

    Chapter  Google Scholar 

  • Bolenz, S., Thiessenhusen, T. & Schäpe, R. (2003). Influence of milk components on properties and consumer acceptance of milk chocolate. European Food Research and Technology, 216, 28–33.

    Article  CAS  Google Scholar 

  • Bricknell, J. & Hartel, R. W. (1998). Relation of fat bloom in chocolate to polymorphic transition of cocoa butter. Journal of the American Oil Chemists' Society, 75, 1609–1615.

    Article  CAS  Google Scholar 

  • Brown, M. (2009). Biscuits and bakery products. In G. Talbot (Ed.), Science and Technology of Enrobed and Filled Chocolate, confectionery and bakery products (1st ed., pp. 152–162). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Bystrom, C. E. & Hartel, R. W. (1994). Evaluation of milk fat fractionation and modification techniques for creating cocoa butter replacers. LWT – Food Science Technology, 27, 142–150.

    Article  CAS  Google Scholar 

  • Campbell, L. B., Andersen, D. A. & Keeney, P. G. (1969). Hydrogenated milk fat as an inhibitor of the fat bloom defect in dark chocolate. Journal of Dairy Science, 52, 976–979.

    Article  CAS  Google Scholar 

  • Choi, Y. J., McCarthy, K. L. & McCarthy, M. J. (2005). Oil migration in a chocolate confectionery system evaluated by magnetic resonance imaging. Journal of Food Science, 70, E312–E317.

    Article  CAS  Google Scholar 

  • Codex (1999). Codex standard for milkfat products. CODEX STAN A-2-1973, rev.1–1999 Codex Alimentarius (pp. 280–1973). Rome: FAO/WHO.

    Google Scholar 

  • Codex (2003). Codex standard for chocolate and chocolate products. CODEX STAN 87–1981, Rev. 1–2003 Codex Alimentarius. Rome: FAO/WHO.

    Google Scholar 

  • Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L. & Peyraud, J. L. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science, 89, 1956–1969.

    Article  CAS  PubMed  Google Scholar 

  • Dahlenborg, H. (2014). Fat bloom on chocolate confectionery systems – From core to surface. PhD thesis, University of Lund, Sweden.

    Google Scholar 

  • Dahlenborg, H., Millqvist-Fureby, A., Bergenståhl, B. & Kalnin, D. J. E. (2011). Investigation of chocolate surfaces using profilometry and low vacuum scanning electron microscopy. Journal of the American Oil Chemists' Society, 88, 773–783.

    Article  CAS  Google Scholar 

  • Dahlenborg, H., Millqvist-Fureby, A. & Bergenståhl, B. (2015a). Effect of particle size in chocolate shell on oil migration and fat bloom development. Journal of Food Engineering, 146, 172–181.

    Article  CAS  Google Scholar 

  • Dahlenborg, H., Millqvist-Fureby, A. & Bergenståhl, B. (2015b). Effect of shell microstructure on oil migration and fat bloom development in model pralines. Food Structure, 5, 51–65.

    Article  Google Scholar 

  • De Clercq, N., Depypere, F., Delbaere, C., Nopens, I., Bernaert, H. & Dewettinck, K. (2014). Influence of cocoa butter diacylglycerols on migration induced fat bloom in filled chocolates. European Journal of Lipid Science and Technology, 116, 1388–1399.

    Article  CAS  Google Scholar 

  • De Man, J. M. & Wood, F. W. (1959). Hardness of butter. II. Influence of setting. Journal of Dairy Science, 42, 56–61.

    Article  Google Scholar 

  • Deka, K., MacMillan, B., Ziegler, G. R., Marangoni, A. G., Newling, B. & Balcom, B. J. (2006). Spatial mapping of solid and liquid lipid in confectionery products using a 1D centric SPRITE MRI technique. Food Research International, 39, 365–371.

    Article  CAS  Google Scholar 

  • Delbaere, C., Van de Walle, D., Depypere, F., Gellynck, X. & Dewettinck, K. (2016). Relationship between chocolate microstructure, oil migration, and fat bloom in filled chocolates. European Journal of Lipid Science and Technology, 118, 1800–1826.

    Article  CAS  Google Scholar 

  • Dewettinck, K., De Moor, H. & Huyghebaert, A. (1996). The free fat content of dried milk products and flow properties of milk chocolate. Milchwissenschaft, 51, 25–28.

    CAS  Google Scholar 

  • Dibildox-Alvarado, E., Rodrigues, J. N., Gioielli, L. A., Toro-Vazquez, J. F. & Marangoni, A. G. (2004). Effects of crystalline microstructure on oil migration in a semisolid fat matrix. Crystal Growth & Design, 4, 731–736.

    Article  CAS  Google Scholar 

  • Dimick, P. S., Ziegler, G. R., Full, N. A. & Reddy, S. Y. (1996). Formulation of milk chocolate using milkfat fractions. Australian Journal of Dairy Technology, 51, 123–126.

    Google Scholar 

  • Early, R. (2012). Dairy products and milk-based food ingredients. In D. Baines & R. Seal (Eds.), Natural food additives, ingredients and flavourings (1st ed., pp. 417–445). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Edmondson, L. F., Yoncoskie, R. A., Rainey, N. H., Douglas, F. W. & Bitman, J. (1974). Feeding encapsulated oils to increase the polyunsaturation in milk and meat fat. Journal of the American Oil Chemists’ Society, 51, 72–76.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, W. P. (1984). Uses for dairy ingredients in confectionery. International Journal of Dairy Technology, 37, 122–125.

    Article  CAS  Google Scholar 

  • Elgersma, A., Tamminga, S. & Ellen, G. (2006). Modifying milk composition through forage. Animal Feed Science and Technology, 131, 207–225.

    Article  CAS  Google Scholar 

  • Engeseth, N. J., Pangan, A. C. & Fernando, M. (2018). Current context on chocolate flavor development — A review. Current Opinion in Food Science, 21, 84–91.

    Article  Google Scholar 

  • EU (2000). Directive 2000/36/EC of the European Parliament and of the Council of 23 June 2000 relating to cocoa and chocolate products intended for human consumption. Brussels: European Union.

    Google Scholar 

  • FDA (2018). Code of Federal Regulations – Title 21 – food and drugs. Part 163. Cacao: Products.

    Google Scholar 

  • Fowler, M. & Coutel, F. (2017). Cocoa beans: From tree to factory. In S. T. Beckett, M. S. Fowler & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (5th ed., pp. 9–49). Oxford: Wiley.

    Chapter  Google Scholar 

  • Franke, K. & Heinzelmann, K. (2008). Structure improvement of milk powder for chocolate processing. International Dairy Journal, 18, 928–931.

    Article  CAS  Google Scholar 

  • Full, N. A., Reddy, S. Y., Dimick, P. S. & Ziegler, G. R. (1996). Physical and sensory properties of milk chocolate formulated with anhydrous milk fat fractions. Journal of Food Science, 61, 1068–1084.

    Article  CAS  Google Scholar 

  • Galdámez, J. R., Szlachetka, K., Duda, J. L. & Ziegler, G. R. (2009). Oil migration in chocolate: A case of non-Fickian diffusion. Journal of Food Engineering, 92, 261–268.

    Article  CAS  Google Scholar 

  • Ghosh, V., Ziegler, G. R. & Anantheswaran, R. C. (2002). Fat, moisture, and ethanol migration through chocolates and confectionary coatings. Critical Reviews in Food Science and Nutrition, 42, 583–626.

    Article  CAS  PubMed  Google Scholar 

  • Grivetti, L. E., Dillinger, T. L., Barriga, P., Escárcega, S., Jimenez, M. & Lowe, D. S. (2000). Food of the gods: Cure for humanity? A cultural history of the medicinal and ritual use of chocolate. Journal of Nutrition, 130, 2057S–2072S.

    Article  PubMed  Google Scholar 

  • Guiheneuf, T. M., Couzens, P. J., Wille, H. J. & Hall, L. D. (1997). Visualisation of liquid triacylglycerol migration in chocolate by magnetic resonance imaging. Journal of the Science of Food and Agriculture, 73, 265–273.

    Article  CAS  Google Scholar 

  • Hartel, R. W. (1996). Applications of milk-fat fractions in confectionery products. Journal of the American Oil Chemists’ Society, 73, 945–953.

    Article  CAS  Google Scholar 

  • Hayes, J. E., Running, C. A. & Ziegler, G. R. (2016). Degree of free fatty acid saturation influences chocolate rejection in human assessors. Chemical Senses, 42, 161–166.

    PubMed  Google Scholar 

  • Heertje, I. (1993). Microstructural studies in fat research. Food Structure, 12, 77–94.

    CAS  Google Scholar 

  • Herrera, M. L., de León Gatti, M. & Hartel, R. W. (1999). A kinetic analysis of crystallization of a milk fat model system. Food Research International, 32, 289–298.

    Article  CAS  Google Scholar 

  • Johansson, D. & Bergenståhl, B. (1995). Sintering of fat crystal networks in oil during post-crystallization processes. Journal of the American Oil Chemists' Society, 72, 911–920.

    Article  CAS  Google Scholar 

  • Juul, B. M. (2010). Beat migration bloom by optimizing your process. A new look at the tempering process to reduce migration bloom in chocolate products, Manufacturing Confectioner, 68–75.

    Google Scholar 

  • Kamphuis, H. J. (2009). Production and quality standards of cocoa mass, cocoa butter and cocoa powder. In S. T. Beckett, M. S. Fowler & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (4th ed., pp. 121–141). Oxford: Wiley.

    Google Scholar 

  • Kaylegian, K. E. (1999). The production of specialty milk fat ingredients. Journal of Dairy Science, 82, 1433–1439.

    Article  CAS  Google Scholar 

  • Kaylegian, K. E. & Lindsay, R. C. (1995). Handbook of milkfat fractionation technology and applications (1st ed.). Urbana: AOCS Press.

    Google Scholar 

  • Kaylegian, K. E., Hartel, R. W. & Lindsay, R. C. (1993). Applications of modified milk fat in food products. Journal of Dairy Science, 76, 1782–1796.

    Article  Google Scholar 

  • Keogh, M. K. & Higgins, A. C. (1986). Anhydrous milk fat: 1. Oxidative stability aspects. Iranian Journal of Food Science and Technology, 10, 11–22.

    CAS  Google Scholar 

  • Koc, A. B., Heinemann, P. H. & Ziegler, G. R. (2003). A process for increasing the free fat content of spray-dried whole milk powder. Journal of Food Science, 68, 210–216.

    Article  CAS  Google Scholar 

  • Koyano, T., Hachiya, I. & Sato, K. (1990). Fat polymorphism and crystal seeding effects on fat bloom stability of dark chocolate. Food Structure, 9, 231–240.

    Google Scholar 

  • Lee, W. L., McCarthy, M. J. & McCarthy, K. L. (2010). Oil migration in 2-component confectionery systems. Journal of Food Science, 75, E83–E89.

    Article  CAS  PubMed  Google Scholar 

  • Liang, B. & Hartel, R. W. (2004). Effects of milk powders in milk chocolate. Journal of Dairy Science, 87, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Lippi, D. (2013). Chocolate in history: Food, medicine, medi-food. Nutrients, 5, 1573–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohman, M. H. & Hartel, R. W. (1994). Effect of milk fat fractions on fat bloom in dark chocolate. Journal of the American Oil Chemists' Society, 71, 267–276.

    Article  CAS  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P., Riaublanc, A. & Ollivon, M. (2006). Milk fat and primary fractions obtained by dry fractionation: 1. Chemical composition and crystallisation properties. Chemistry and Physics of Lipids, 144, 17–33.

    Article  CAS  PubMed  Google Scholar 

  • Maleky, F., McCarthy, K. L., McCarthy, M. J. & Marangoni, A. G. (2012). Effect of cocoa butter structure on oil migration. Journal of Food Science, 77, E74–E79.

    Article  CAS  PubMed  Google Scholar 

  • Mallia, S., Escher, F. & Schlichtherle-Cerny, H. (2008). Aroma-active compounds of butter: A review. European Food Research and Technology, 226, 315–325.

    Article  CAS  Google Scholar 

  • Manning, D. & Dimick, P. (1985). Crystal morphology of cocoa butter. Food Microstructure, 4, 249–265.

    Google Scholar 

  • Marangoni, A. G. (2002). The functionality of milkfat fractions in confectionery and plastic fats. In J. Welti-Chanes & J. M. Aguilera (Eds.), Engineering and food for the 21st century (1st ed., pp. 125–140). Boca Raton: CRC Press.

    Google Scholar 

  • Marangoni, A. G. & Lencki, R. W. (1998). Ternary phase behavior of milk fat fractions. Journal of Agricultural and Food Chemistry, 46, 3879–3884.

    Article  CAS  Google Scholar 

  • Martin, R. A., Jr. (1988). Chocolate. Advances in Food Research, 31, 211–342.

    Article  Google Scholar 

  • Mazzanti, G., Guthrie, S. E., Sirota, E. B., Marangoni, A. G. & Idziak, S. H. J. (2004). Effect of minor components and temperature profiles on polymorphism in milk fat. Crystal Growth & Design, 4, 1303–1309.

    Article  CAS  Google Scholar 

  • McCarthy, K. L. & McCarthy, M. J. (2008). Oil migration in chocolate-peanut butter paste confectionery as a function of chocolate formulation. Journal of Food Science, 73, 266–273.

    Article  CAS  Google Scholar 

  • Metin, S. & Hartel, R. W. (1996). Crystallization behavior of blends of cocoa butter and milk fat or milk fat fractions. Journal of Thermal Analysis, 47, 1527–1544.

    Article  CAS  Google Scholar 

  • Metin, S. & Hartel, R. (2005). Crystallization of fats and oils. In F. Shahidi (Ed.), Bailey’s industrial oil and fat products (6th ed.). New York: Wiley.

    Google Scholar 

  • Metin, S. & Hartel, R. W. (2012). 15 - Milk fat and cocoa butter. In N. Garti & N. R. Widlak (Eds.), Cocoa butter and related compounds (1st ed., pp. 365–392). Urbana: AOCS Press.

    Chapter  Google Scholar 

  • Minifie, B. W. (1989). Chocolate, cocoa, and confectionery: Science and technology (3rd ed.). New York: Van Nostrand Reinhold.

    Book  Google Scholar 

  • Palmquist, D. L., Denise Beaulieu, A. & Barbano, D. M. (1993). Feed and animal factors influencing milk fat composition. Journal of Dairy Science, 76, 1753–1771.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, A. (1991). Texturization of milk fat (Bulletin 260) (pp. 10–12). Brussels: International Dairy Federation.

    Google Scholar 

  • Precht, D. (1988). Fat crystal structure in cream and butter. In N. G. A. K. Saito (Ed.), Crystallization and polymorphism of fats and fatty acids (pp. 329–357). New York: Marcel Dekker.

    Google Scholar 

  • Reddy, Y. S., Full, N., Dimick, P. S. & Ziegler, G. R. (1996). Tempering method for chocolate containing milk-fat fractions. Journal of the American Oil Chemists' Society, 73, 723–727.

    Article  Google Scholar 

  • Reinke, S. K., Roth, S. V., Santoro, G., Vieira, J., Heinrich, S. & Palzer, S. (2015). Tracking structural changes in lipid-based multicomponent food materials due to oil migration by microfocus small-angle X-ray scattering. ACS Applied Materials Interface, 7, 9929–9936.

    Article  CAS  Google Scholar 

  • Rønholt, S., Mortensen, K. & Knudsen, J. C. (2013). The effective factors on the structure of butter and other milk fat-based products. Comprehensive Reviews in Food Science and Food Safety, 12, 468–482.

    Article  CAS  PubMed  Google Scholar 

  • Rothkopf, I. & Danzl, W. (2015). Changes in chocolate crystallization are influenced by type and amount of introduced filling lipids. European Journal of Lipid Science and Technology, 117, 1714–1721.

    Article  CAS  Google Scholar 

  • Rousseau, D. (2006). On the porous mesostructure of milk chocolate viewed with atomic force microscopy. LWT – Food Science and Technology, 39, 852–860.

    Article  CAS  Google Scholar 

  • Rousseau, D. & Marangoni, A. G. (1998). The effects of interesterification on physical and sensory attributes of butterfat and butterfat–canola oil spreads. Food Research International, 31, 381–388.

    Article  CAS  Google Scholar 

  • Rousseau, D. & Smith, P. (2008). Microstructure of fat bloom development in plain and filled chocolate confections. Soft Matter, 4, 1706–1712.

    Article  CAS  PubMed  Google Scholar 

  • Rowney, M. & Christian, M. (1996). Effect of cow diet and stage of lactation on the composition of milkfat for cheese manufacture. Australian Journal of Dairy Technology, 51, 118–122.

    Google Scholar 

  • Sabariah, S., Md Ali, A. R. & Chong, C. L. (1998). Physical properties of Malaysian cocoa butter as affected by addition of milkfat and cocoa butter equivalent. International Journal of Food Sciences and Nutrition, 49, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Sala, G., Van Vliet, T., Stuart, M.C., Van de Velde, F. & Van Aken, G.A. (2009). Deformation and fracture of emulsion-filled gels: Effect of gelling agent concentration and oil droplet size. Food Hydrocolloids, 23(7), 1853–1863.

    Google Scholar 

  • Schieberle, P., Gassenmeier, K., Guth, H., Sen, A. & Grosch, W. (1993). Character impact odour compounds of different kinds of butter. LWT – Food Science and Technology, 26, 347–356.

    Article  CAS  Google Scholar 

  • Schlutt, B., Moran, N., Schieberle, P. & Hofmann, T. (2007). Sensory-directed identification of creaminess-enhancing volatiles and semivolatiles in full-fat cream. Journal of Agricultural and Food Chemistry, 55, 9634–9645.

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer, J. M. & Hartel, R. W. (2001). Interactions of milk fat and milk fat fractions with confectionery fats. Journal of Dairy Science, 84, 332–344.

    Article  CAS  PubMed  Google Scholar 

  • Schnermann, P. & Schieberle, P. (1997). Evaluation of key odorants in milk chocolate and cocoa mass by aroma extract dilution analyses. Journal of Agricultural and Food Chemistry, 45, 867–872.

    Article  CAS  Google Scholar 

  • Shi, Y., Smith, C. M. & Hartel, R. W. (2001). Compositional effects on milk fat crystallization. Journal of Dairy Science, 84, 2392–2401.

    Article  CAS  PubMed  Google Scholar 

  • Shiratsuchi, H., Shimoda, M., Imayoshi, K., Noda, K. & Osajima, Y. (1994a). Off-flavor compounds in spray-dried skim milk powder. Journal of Agricultural and Food Chemistry, 42, 1323–1327.

    Article  CAS  Google Scholar 

  • Shiratsuchi, H., Shimoda, M., Imayoshi, K., Noda, K. & Osajima, Y. (1994b). Volatile flavor compounds in spray-dried skim milk powder. Journal of Agricultural and Food Chemistry, 42, 984–988.

    Article  CAS  Google Scholar 

  • Sichien, M., Thienpont, N., Fredrick, E., Trung Le, T., Van Camp, J. & Dewettinck, K. (2009). Processing means for milk fat fractionation and production of functional compounds. In M. Corredig (Ed.), Dairy-derived ingredients: Food and nutraceutical uses (1st ed., pp. 68–102). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Skytte, U. P. & Kaylegian, K. E. (2017). Ingredients from milk. In S. T. Beckett, M. S. Fowler, & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (5th ed., pp. 102–134). Oxford: Wiley.

    Chapter  Google Scholar 

  • Smith, P. R. & Dahlman, A. (2005). The use of atomic force microscopy to measure the formation and development of chocolate bloom in pralines. Journal of the American Oil Chemists' Society, 82, 165–168.

    Article  CAS  Google Scholar 

  • Smith, K., Cain, F. W. & Talbot, G. (2007). Effect of nut oil migration on polymorphic transformation in a model system. Food Chemistry, 102, 656–663.

    Article  CAS  Google Scholar 

  • Stewart, I. D. (2017). The effect of low melting oils on the crystallisation of confectionery fats. PhD thesis, Loughborough University, United Kingdom.

    Google Scholar 

  • Stewart, I. M. & Timms, R. E. (2002). Fats for chocolate and sugar confectionery. In K. K. Rajah (Ed.), Fats in food technology (1st ed., pp. 159–189). Sheffield: Sheffield Academic Press.

    Google Scholar 

  • Svanberg, L., Ahrné, L., Lorén, N. & Windhab, E. (2011). Effect of pre-crystallization process and solid particle addition on cocoa butter crystallization and resulting microstructure in chocolate model systems. Procedia Food Science, 1, 1910–1917.

    Article  CAS  Google Scholar 

  • Tietz, R. A. & Hartel, R. W. (2000). Effects of minor lipids on crystallization of milk fat-cocoa butter blends and bloom formation in chocolate. Journal of the American Oil Chemists’ Society, 77, 763–771.

    Article  CAS  Google Scholar 

  • Timms, R. E. (1980). The phase behavior and polymorphism of milkfat, milkfat fractions and fully hardened milkfat. Australian Journal of Dairy Technology, 47–52.

    Google Scholar 

  • Timms, R. E. (2003). Confectionery fats handbook: Properties, production and applications (1st ed.). Cambridge: The Oily Press, Woodhead Publishing.

    Book  Google Scholar 

  • Timms, R. E. & Parekh, J. V. (1980). The possibilities for using hydrogenated, fractionated or interesterified milk fat in chocolate. LWT – Food Science and Technology, 13, 177–181.

    CAS  Google Scholar 

  • Twomey, M. & Keogh, K. (1998). Milk powder in chocolate. Farm Food, 8, 9–11.

    Google Scholar 

  • Twomey, M., Keogh, M. K., O'Kennedy, B. T., Auty, M. & Mulvihill, D. M. (2000). Effect of milk composition on selected properties of spray-dried high-fat and skim-milk powders. Irish Journal of Agricultural and Food Research, 39, 79–94.

    CAS  Google Scholar 

  • Urbach, G. (1990). Effect of feed on flavor in dairy foods. Journal of Dairy Science, 73, 3639–3650.

    Article  Google Scholar 

  • Van Aken, G. A. & Visser, K. A. (2000). Firmness and crystallization of milk fat in relation to processing conditions. Journal of Dairy Science, 83, 1919–1932.

    Article  PubMed  Google Scholar 

  • Vanhoutte, B., Dewettinck, K., Vanlerberghe, B. & Huyghebaert, A. (2002). Monitoring milk fat fractionation: Effect of agitation, temperature, and residence time on physical properties. Journal of the American Oil Chemists’ Society, 79, 1169–1176.

    Article  CAS  Google Scholar 

  • Verhey, J. (1986). Physical properties of dried milk in relation to chocolate manufacture. Netherlands Milk and Dairy Journal, 40, 261–268.

    Google Scholar 

  • Walter, P. & Cornillon, P. (2001). Influence of thermal conditions and presence of additives on fat bloom in chocolate. Journal of the American Oil Chemists' Society, 78, 927–932.

    Article  CAS  Google Scholar 

  • Weihe, H. D. (1961). Interesterified butter oil. Journal of Dairy Science, 44, 944–947.

    Article  CAS  Google Scholar 

  • Windhab, E. J. (2017). Tempering. In S. T. Beckett, M. S. Fowler, & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (5th ed., pp. 314–355). Oxford: Wiley.

    Chapter  Google Scholar 

  • Wood, R. (2017). Legal aspects of chocolate manufacture. In S. T. Beckett, M. S. Fowler, & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (5th ed., pp. 675–694). Oxford: Wiley.

    Chapter  Google Scholar 

  • Wright, A. J., Hartel, R. W., Narine, S. S. & Marangoni, A. G. (2000a). The effect of minor components on milk fat crystallization. Journal of the American Oil Chemists’ Society, 77, 463–475.

    Article  CAS  Google Scholar 

  • Wright, A. J., Narine, S. S. & Marangoni, A. G. (2000b). Comparison of experimental techniques used in lipid crystallization studies. Journal of the American Oil Chemists' Society, 77, 1239–1242.

    Article  CAS  Google Scholar 

  • Ziegleder, G. (2017). Flavour development in cocoa and chocolate. In S. T. Beckett, M. S. Fowler, & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use, 5th edition (5th ed., pp. 185–215). Oxford: Wiley.

    Chapter  Google Scholar 

  • Ziegleder, G., Moser, C. & Geier-Greguska, J. (1996). Kinetik der fettmigration in schokoladenprodukten teil I: grundlagen und analytik. European Journal of Lipid Science and Technology, 98, 196–199.

    CAS  Google Scholar 

  • Ziegler, G. (2009). Product design and shelf-life issues: Oil migration and fat bloom. In G. Talbot (Ed.), Science and technology of enrobed and filled chocolate, confectionery and bakery products (1st ed., pp. 185–210). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  • Ziegler, G. R. & Hogg, R. (2017). Particle size reduction. In S. T. Beckett, M. S. Fowler, & G. R. Ziegler (Eds.), Industrial chocolate manufacture and use (5th ed., pp. 216–240). New York: Wiley.

    Chapter  Google Scholar 

  • Ziegler, G., Shetty, A. & Anantheswaran, R. (2004). Nut oil migration through chocolate. Manufacturing Confectioner, 84(9), 118–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Waldron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waldron, D.S. et al. (2020). Role of Milk Fat in Dairy Products. In: McSweeney, P.L.H., Fox, P.F., O'Mahony, J.A. (eds) Advanced Dairy Chemistry, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48686-0_9

Download citation

Publish with us

Policies and ethics