Skip to main content

Isoform-Disease Association Prediction by Data Fusion

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

Abstract

Alternative splicing enables a gene spliced into different isoforms, which are closely related with diverse developmental abnormalities. Identifying the isoform-disease associations helps to uncover the underlying pathology of various complex diseases, and to develop precise treatments and drugs for these diseases. Although many approaches have been proposed for predicting gene-disease associations and isoform functions, few efforts have been made toward predicting isoform-disease associations in large-scale, the main bottleneck is the lack of ground-truth isoform-disease associations. To bridge this gap, we propose a multi-instance learning inspired computational approach called IDAPred to fuse genomics and transcriptomics data for isoform-disease association prediction. Given the bag-instance relationship between gene and its spliced isoforms, IDAPred introduces a dispatch and aggregation term to dispatch gene-disease associations to individual isoforms, and reversely aggregate these dispatched associations to affiliated genes. Next, it fuses different genomics and transcriptomics data to replenish gene-disease associations and to induce a linear classifier for predicting isoform-disease associations in a coherent way. In addition, to alleviate the bias toward observed gene-disease associations, it adds a regularization term to differentiate the currently observed associations from the unobserved (potential) ones. Experimental results show that IDAPred significantly outperforms the related state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  2. Carbonneau, M.A., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance learning: a survey of problem characteristics and applications. Pattern Recogn. 77, 329–353 (2018)

    Google Scholar 

  3. Chen, H., Shaw, D., Zeng, J., Bu, D., Jiang, T.: Diffuse: predicting isoform functions from sequences and expression profiles via deep learning. Bioinformatics 35(14), i284–i294 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Claussnitzer, M., et al.: A brief history of human disease genetics. Nature 577(7789), 179–189 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Consortium, E.P., et al.: An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57 (2012)

    Google Scholar 

  6. Eksi, R., et al.: Systematically differentiating functions for alternatively spliced isoforms through integrating rna-seq data. PLoS Comput. Biol. 9(11), e1003314 (2013)

    PubMed  PubMed Central  Google Scholar 

  7. Ellis, J.D., et al.: Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 46(6), 884–892 (2012)

    CAS  PubMed  Google Scholar 

  8. Gaudet, P., Dessimoz, C.: Gene ontology: pitfalls, biases, and remedies. In: The Gene Ontology Handbook, pp. 189–205. Humana Press, New York (2017)

    Google Scholar 

  9. Holman, L., Head, M.L., Lanfear, R., Jennions, M.D.: Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13(7), e1002190 (2015)

    PubMed  PubMed Central  Google Scholar 

  10. Holtzman, D.M., et al.: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Nat. Acad. Sci. 97(6), 2892–2897 (2000)

    CAS  PubMed  Google Scholar 

  11. Jiang, Y., et al.: An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 17(1), 184 (2016)

    PubMed  PubMed Central  Google Scholar 

  12. Kim, D., Langmead, B., Salzberg, S.L.: HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12(4), 357 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, H.D., Menon, R., Omenn, G.S., Guan, Y.: The emerging era of genomic data integration for analyzing splice isoform function. Trends Genet. 30(8), 340–347 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, W., et al.: High-resolution functional annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based label propagation method. Nucleic Acids Res. 42(6), e39–e39 (2014)

    CAS  PubMed  Google Scholar 

  15. Lundberg, A.K., Jonasson, L., Hansson, G.K., Mailer, R.K.: Activation-induced FOXP3 isoform profile in peripheral CD4+ T cells is associated with coronary artery disease. Atherosclerosis 267, 27–33 (2017)

    CAS  PubMed  Google Scholar 

  16. Luo, P., Li, Y., Tian, L.P., Wu, F.X.: Enhancing the prediction of disease-gene associations with multimodal deep learning. Bioinformatics 35(19), 3735–3742 (2019)

    CAS  PubMed  Google Scholar 

  17. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NeurIPS, pp. 570–576 (1998)

    Google Scholar 

  18. Natarajan, N., Dhillon, I.S.: Inductive matrix completion for predicting gene-disease associations. Bioinformatics 30(12), i60–i68 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Neagoe, C., et al.: Titin isoform switch in ischemic human heart disease. Circulation 106(11), 1333–1341 (2002)

    PubMed  Google Scholar 

  20. Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J.: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40(12), 1413 (2008)

    CAS  PubMed  Google Scholar 

  21. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L.: Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33(3), 290 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Piñero, J., et al.: The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48(D1), D845–D855 (2020)

    PubMed  Google Scholar 

  23. Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J.X., Jensen, L.J.: Diseases: text mining and data integration of disease-gene associations. Methods 74, 83–89 (2015)

    CAS  PubMed  Google Scholar 

  24. Sanan, D.A., et al.: Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. isoform apoE4 associates more efficiently than apoE3. J. Clin. Invest. 94(2), 860–869 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012)

    CAS  PubMed  Google Scholar 

  26. Shaw, D., Chen, H., Jiang, T.: Deepisofun: a deep domain adaptation approach to predict isoform functions. Bioinformatics 35(15), 2535–2544 (2019)

    CAS  PubMed  Google Scholar 

  27. Shen, J., et al.: Predicting protein-protein interactions based only on sequences information. Proc. Nat. Acad. Sci. 104(11), 4337–4341 (2007)

    CAS  PubMed  Google Scholar 

  28. Skotheim, R.I., Nees, M.: Alternative splicing in cancer: noise, functional, or systematic? Int. J. Biochem. Cell Biol. 39(7–8), 1432–1449 (2007)

    CAS  PubMed  Google Scholar 

  29. Smith, L.M., Kelleher, N.L.: Proteoforms as the next proteomics currency. Science 359(6380), 1106–1107 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Strittmatter, W.J., et al.: Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Nat. Acad. Sci. 90(17), 8098–8102 (1993)

    CAS  PubMed  Google Scholar 

  31. Sun, P.G., Gao, L., Han, S.: Prediction of human disease-related gene clusters by clustering analysis. Int. J. Biol. Sci. 7(1), 61 (2011)

    PubMed  PubMed Central  Google Scholar 

  32. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6(1), e1000641 (2010)

    PubMed  PubMed Central  Google Scholar 

  33. Wang, E.T., et al.: Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221), 470 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, K., Wang, J., Domeniconi, C., Zhang, X., Yu, G.: Differentiating isoform functions with collaborative matrix factorization. Bioinformatics 36(6), 1864–1871 (2020)

    PubMed  Google Scholar 

  35. Wang, X., Gulbahce, N., Yu, H.: Network-based methods for human disease gene prediction. Brief. Funct. Genomics 10(5), 280–293 (2011)

    CAS  PubMed  Google Scholar 

  36. Xing, Y., Yu, G., Domeniconi, C., Wang, J., Zhang, Z., Guo, M.: Multi-view multi-instance multi-label learning based on collaborative matrix factorization. In: AAAI, pp. 5508–5515 (2019)

    Google Scholar 

  37. Xiong, H.Y., et al.: The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218), 1254806 (2015)

    PubMed  Google Scholar 

  38. Yeo, G., Holste, D., Kreiman, G., Burge, C.B.: Variation in alternative splicing across human tissues. Genome Biol. 5(10), R74 (2004). https://doi.org/10.1186/gb-2004-5-10-r74

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu, G., Rangwala, H., Domeniconi, C., Zhang, G., Yu, Z.: Protein function prediction using multilabel ensemble classification. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(4), 1045–1057 (2013)

    CAS  Google Scholar 

  40. Yu, G., Wang, K., Domeniconi, C., Guo, M., Wang, J.: Isoform function prediction based on bi-random walks on a heterogeneous network. Bioinformatics 36(1), 303–310 (2020)

    PubMed  Google Scholar 

  41. Zhou, Z.H., Zhang, M.L., Huang, S.J., Li, Y.F.: Multi-instance multi-label learning. Artif. Intell. 176(1), 2291–2320 (2012)

    Google Scholar 

Download references

Acknowledgements

This research is supported by NSFC (61872300), Fundamental Research Funds for the Central Universities (XDJK2019B024 and XDJK2020B028), Natural Science Foundation of CQ CSTC (cstc2018jcyjAX0228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxian Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Q., Wang, J., Zhang, X., Yu, G. (2020). Isoform-Disease Association Prediction by Data Fusion. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics