Skip to main content

Dynamic Equilibria in Time-Varying Networks

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12283))

Included in the following conference series:

Abstract

Predicting selfish behavior in public environments by considering Nash equilibria is a central concept of game theory. For the dynamic traffic assignment problem modeled by a flow over time game, in which every particle tries to reach its destination as fast as possible, the dynamic equilibria are called Nash flows over time. So far, this model has only been considered for networks in which each arc is equipped with a constant capacity, limiting the outflow rate, and with a transit time, determining the time it takes for a particle to traverse the arc. However, real-world traffic networks can be affected by temporal changes, for example, caused by construction works or special speed zones during some time period. To model these traffic scenarios appropriately, we extend the flow over time model by time-dependent capacities and time-dependent transit times. Our first main result is the characterization of the structure of Nash flows over time. Similar to the static-network model, the strategies of the particles in dynamic equilibria can be characterized by specific static flows, called thin flows with resetting. The second main result is the existence of Nash flows over time, which we show in a constructive manner by extending a flow over time step by step by these thin flows.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. Games Econ. Behav. 92, 232–247 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. In Proceedings of the 2017 ACM Conference on Economics and Computation, pp. 695–696 (2017)

    Google Scholar 

  3. Cominetti, R., Correa, J.R., Larré, O.: Existence and uniqueness of equilibria for flows over time. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 552–563. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_44

    Chapter  MATH  Google Scholar 

  4. Cominetti, R., Correa, J., Larré, O.: Dynamic equilibria in fluid queueing networks. Oper. Res. 63(1), 21–34 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria in fluid queuing networks. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 161–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_14

    Chapter  Google Scholar 

  6. Correa, J., Cristi, A., Oosterwijk, T.: On the price of anarchy for flows over time. In Proceedings of the 2019 ACM Conference on Economics and Computation, pp. 559–577 (2019)

    Google Scholar 

  7. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)

    Article  MathSciNet  Google Scholar 

  8. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6, 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  9. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  10. Gale, D.: Transient flows in networks. Michigan Math. J. 6(1), 59–63 (1959)

    Article  MathSciNet  Google Scholar 

  11. Graf, L., Harks, T., Sering, L.: Dynamic flows with adaptive route choice. Math. Program. (2020)

    Google Scholar 

  12. Harks, T., Peis, B., Schmand, D., Tauer, B., Vargas Koch, L.: Competitive packet routing with priority lists. ACM Trans. Econo. Comp. 6(1), 4 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Koch, R.: Routing Games over Time. Ph.D. thesis, Technische Universität Berlin (2012). https://doi.org/10.14279/depositonce-3347

  14. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 323–334. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-2_29

    Chapter  Google Scholar 

  15. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theor. Comput. Syst. 49(1), 71–97 (2011)

    Article  MathSciNet  Google Scholar 

  16. Macko, M., Larson, K., Steskal, L.: Braess’s paradox for flows over time. Theor. Comput. Syst. 53(1), 86–106 (2013)

    Article  MathSciNet  Google Scholar 

  17. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Oper. Res. 21(2), 517–527 (1973)

    Article  MathSciNet  Google Scholar 

  18. Peis, B., Tauer, B., Timmermans, V., Vargas Koch, L.: Oligopolistic competitive packet routing. In: 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2018)

    Google Scholar 

  19. Scarsini, M., Schröder, M., Tomala, T.: Dynamic atomic congestion games with seasonal flows. Oper. Res. 66(2), 327–339 (2018)

    Article  MathSciNet  Google Scholar 

  20. Sering, L., Skutella, M.: Multi-source multi-sink Nash flows over time. In: 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, vol. 65, pp. 12:1–12:20 (2018)

    Google Scholar 

  21. Sering, L., Vargas Koch, L.: Nash flows over time with spillback. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 935–945. SIAM (2019)

    Google Scholar 

  22. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research trends in combinatorial optimization, pp. 451–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1_21

  23. Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)

    Google Scholar 

  24. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Engineers 1(5), 767–768 (1952)

    Article  Google Scholar 

  25. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Oper. Res. 19(7), 1602–1612 (1971)

    Article  MathSciNet  Google Scholar 

  26. Yagar, S.: Dynamic traffic assignment by individual path minimization and queuing. Transp. Res. 5(3), 179–196 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Sering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, H.M., Sering, L. (2020). Dynamic Equilibria in Time-Varying Networks. In: Harks, T., Klimm, M. (eds) Algorithmic Game Theory. SAGT 2020. Lecture Notes in Computer Science(), vol 12283. Springer, Cham. https://doi.org/10.1007/978-3-030-57980-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57980-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57979-1

  • Online ISBN: 978-3-030-57980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics