Skip to main content

Anatomy-Aware Siamese Network: Exploiting Semantic Asymmetry for Accurate Pelvic Fracture Detection in X-Ray Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

Visual cues of enforcing bilaterally symmetric anatomies as normal findings are widely used in clinical practice to disambiguate subtle abnormalities from medical images. So far, inadequate research attention has been received on effectively emulating this practice in computer-aided diagnosis (CAD) methods. In this work, we exploit semantic anatomical symmetry or asymmetry analysis in a complex CAD scenario, i.e., anterior pelvic fracture detection in trauma pelvic X-rays (PXRs), where semantically pathological (refer to as fracture) and non-pathological (e.g. pose) asymmetries both occur. Visually subtle yet pathologically critical fracture sites can be missed even by experienced clinicians, when limited diagnosis time is permitted in emergency care. We propose a novel fracture detection framework that builds upon a Siamese network enhanced with a spatial transformer layer to holistically analyze symmetric image features. Image features are spatially formatted to encode bilaterally symmetric anatomies. A new contrastive feature learning component in our Siamese network is designed to optimize the deep image features being more salient corresponding to the underlying semantic asymmetries (caused by pelvic fracture occurrences). Our proposed method have been extensively evaluated on 2,359 PXRs from unique patients (the largest study to-date), and report an area under ROC curve score of 0.9771. This is the highest among state-of-the-art fracture detection methods, with improved clinical indications.

H. Chen and Y. Wang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barman, A., Inam, M.E., Lee, S., Savitz, S., Sheth, S., Giancardo, L.: Determining ischemic stroke from CT-angiography imaging using symmetry-sensitive convolutional networks. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1873–1877, April 2019. https://doi.org/10.1109/ISBI.2019.8759475

  2. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  3. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989). https://doi.org/10.1109/34.24792

    Article  MATH  Google Scholar 

  4. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large chest x-ray image dataset with multi-label annotated reports. Med. Image Anal. 66, 101797 (2019)

    Article  Google Scholar 

  5. Chen, H., Miao, S., Xu, D., Hager, G.D., Harrison, A.P.: Deep hierarchical multi-label classification of chest x-ray images. In: Cardoso, M.J., et al. (eds.) Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning. Proceedings of Machine Learning Research, 08–10 July 2019, vol. 102, pp. 109–120. PMLR, London (2019). http://proceedings.mlr.press/v102/chen19a.html

  6. Cheng, C.-T., et al.: Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur. Radiol. 29(10), 5469–5477 (2019). https://doi.org/10.1007/s00330-019-06167-y

    Article  Google Scholar 

  7. Clohisy, J.C., et al.: A systematic approach to the plain radiographic evaluation of the young adult hip. J. Bone Joint Surg. Am. 90(Suppl 4), 47 (2008)

    Article  Google Scholar 

  8. Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A.P., Palmer, L.J.: Detecting hip fractures with radiologist-level performance using deep neural networks. CoRR abs/1711.06504 (2017). http://arxiv.org/abs/1711.06504

  9. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for visual object tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1763–1771 (2017)

    Google Scholar 

  10. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for visual object tracking. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  11. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742, June 2006. https://doi.org/10.1109/CVPR.2006.100

  12. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) Similarity-Based Pattern Recognition. LNCS, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely connected convolutional networks. arxiv website. arxiv. org/abs/1608.06993. 24 August 2016

  14. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016). http://arxiv.org/abs/1608.06993

  15. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. CoRR abs/1901.07031 (2019)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

    Google Scholar 

  18. Konukoglu, E., Glocker, B., Criminisi, A., Pohl, K.M.: Wesd-weighted spectral distance for measuring shape dissimilarity. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2284–2297 (2012)

    Article  Google Scholar 

  19. Li, W., et al.: Structured landmark detection via topology-adapting deep graph learning. arXiv preprint arXiv:2004.08190 (2020)

  20. Li, Z., et al.: Thoracic disease identification and localization with limited supervision. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, pp. 8290–8299. IEEE (2018). https://doi.org/10.1109/CVPR.2018.00865

  21. Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S.: Fast interactive object annotation with curve-GCN. CoRR abs/1903.06874 (2019). http://arxiv.org/abs/1903.06874

  22. Liu, C.F., et al.: Using deep siamese neural networks for detection of brain asymmetries associated with Alzheimer’s disease and mild cognitive impairment. Magn. Reson. Imaging (2019). https://doi.org/10.1016/j.mri.2019.07.003, http://www.sciencedirect.com/science/article/pii/S0730725X19300086

  23. Liu, S.X.: Symmetry and asymmetry analysis and its implications to computer-aided diagnosis: a review of the literature. J. Biomed. Inform. 42(6), 1056–1064 (2009)

    Article  Google Scholar 

  24. Liu, Y., et al.: From unilateral to bilateral learning: detecting mammogram masses with contrasted bilateral network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 477–485. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_53

    Chapter  Google Scholar 

  25. Lu, Y., et al.: Learning to segment anatomical structures accurately from one exemplar. arXiv preprint arXiv:2007.03052 (2020)

  26. Melekhov, I., Kannala, J., Rahtu, E.: Siamese network features for image matching. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 378–383, December 2016. https://doi.org/10.1109/ICPR.2016.7899663

  27. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  28. Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR abs/1711.05225 (2017). http://arxiv.org/abs/1711.05225

  29. Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_2

    Chapter  Google Scholar 

  30. Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. CoRR abs/1406.4773 (2014). http://arxiv.org/abs/1406.4773

  31. Varior, R.R., Haloi, M., Wang, G.: Gated siamese convolutional neural network architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 791–808. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_48

    Chapter  Google Scholar 

  32. Wachinger, C., Golland, P., Kremen, W., Fischl, B., Reuter, M., Initiative, A.D.N., et al.: Brainprint: a discriminative characterization of brain morphology. NeuroImage 109, 232–248 (2015)

    Article  Google Scholar 

  33. Wang, H., Xia, Y.: ChestNet: a deep neural network for classification of thoracic diseases on chest radiography. arXiv preprint arXiv:1807.03058 (2018)

  34. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  35. Wang, Y., et al.: Weakly supervised universal fracture detection in pelvic x-rays. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 459–467. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_51

    Chapter  Google Scholar 

  36. Xu, Z., et al.: Less is more: simultaneous view classification and landmark detection for abdominal ultrasound images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 711–719. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_79

    Chapter  Google Scholar 

  37. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2015)

    Google Scholar 

  38. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. CoRR abs/1512.04150 (2015). http://arxiv.org/abs/1512.04150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haomin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H. et al. (2020). Anatomy-Aware Siamese Network: Exploiting Semantic Asymmetry for Accurate Pelvic Fracture Detection in X-Ray Images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics