Skip to main content

Learning Behavioral Representations from Wearable Sensors

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2020)

Abstract

Continuous collection of physiological data from wearable sensors enables temporal characterization of individual behaviors. Understanding the relation between an individual’s behavioral patterns and psychological states can help identify strategies to improve quality of life. One challenge in analyzing physiological data is extracting the underlying behavioral states from the temporal sensor signals and interpreting them. Here, we use a non-parametric Bayesian approach to model sensor data from multiple people and discover the dynamic behaviors they share. We apply this method to data collected from sensors worn by a population of hospital workers and show that the learned states can cluster participants into meaningful groups and better predict their cognitive and psychological states. This method offers a way to learn interpretable compact behavioral representations from multivariate sensor signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aral, S., Nicolaides, C.: Exercise contagion in a global social network. Nat. Commun. 8, 14753 (2017)

    Article  Google Scholar 

  2. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Advances in Neural Information Processing Systems, pp. 577–584 (2002)

    Google Scholar 

  3. Bond, F.W., Lloyd, J., Guenole, N.: The work-related acceptance and action questionnaire: initial psychometric findings and their implications for measuring psychological flexibility in specific contexts. J. Occup. Organ. Psychol. 86(3), 331–347 (2013)

    Article  Google Scholar 

  4. Buysse, D.J., Reynolds III, C.F., Monk, T.H., Berman, S.R., Kupfer, D.J.: The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28(2), 193–213 (1989)

    Article  Google Scholar 

  5. Cohen, J.E., Bro, R.: Nonnegative PARAFAC2: a flexible coupling approach. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M.D., Ward, D. (eds.) LVA/ICA 2018. LNCS, vol. 10891, pp. 89–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93764-9_9

    Chapter  Google Scholar 

  6. Cohen, S., Kamarck, T., Mermelstein, R., et al.: Perceived stress scale. In: Measuring Stress: A Guide For Health and Social Scientists, pp. 235–283 (1994)

    Google Scholar 

  7. Diener, E., Emmons, R.A., Larsen, R.J., Griffin, S.: The satisfaction with life scale. J. Pers. Assess. 49(1), 71–75 (1985)

    Article  Google Scholar 

  8. Falkhausen, M., Reininger, H., Wolf, D.: Calculation of distance measures between hidden Markov models. In: Fourth European Conference on Speech Communication and Technology (1995)

    Google Scholar 

  9. Fox, E.B., Hughes, M.C., Sudderth, E.B., Jordan, M.I., et al.: Joint modeling of multiple time series via the beta process with application to motion capture segmentation. Ann. Appl. Stat. 8(3), 1281–1313 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gosling, S.D., Rentfrow, P.J., Swann Jr., W.B.: A very brief measure of the big-five personality domains. J. Res. Pers. 37(6), 504–528 (2003)

    Article  Google Scholar 

  11. Hallac, D., Vare, S., Boyd, S., Leskovec, J.: Toeplitz inverse covariance-based clustering of multivariate time series data. In: Proceedings of the 23rd ACM SIGKDD, pp. 215–223. ACM (2017)

    Google Scholar 

  12. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis (1970)

    Google Scholar 

  13. Hosseinmardi, H., Ghasemian, A., Narayanan, S., Lerman, K., Ferrara, E.: Tensor embedding: a supervised framework for human behavioral data mining and prediction. arXiv preprint arXiv:1808.10867 (2018)

  14. Hosseinmardi, H., Kao, H.T., Lerman, K., Ferrara, E.: Discovering hidden structure in high dimensional human behavioral data via tensor factorization. In: WSDM Heteronam Workshop (2018)

    Google Scholar 

  15. Houpt, J.W., Frame, M.E., Blaha, L.M.: Unsupervised parsing of gaze data with a beta-process vector auto-regressive hidden Markov model. Behav. Res. Methods 50(5), 2074–2096 (2018)

    Article  Google Scholar 

  16. Jørgensen, P.J., Nielsen, S.F., Hinrich, J.L., Schmidt, M.N., Madsen, K.H., Mørup, M.: Probabilistic parafac2. arXiv preprint arXiv:1806.08195 (2018)

  17. Luthans, F., Avolio, B.J., Avey, J.B., Norman, S.M.: Positive psychological capital: measurement and relationship with performance and satisfaction. Pers. Psychol. 60(3), 541–572 (2007)

    Article  Google Scholar 

  18. Maddison, R., et al.: International physical activity questionnaire (IPAQ) and new Zealand physical activity questionnaire (NZPAQ): a doubly labelled water validation. Int. J. Behav. Nutr. Phys. Act. 4(1), 62 (2007)

    Article  Google Scholar 

  19. Monbet, V., Ailliot, P.: Sparse vector Markov switching autoregressive models. Application to multivariate time series of temperature. Comput. Stat. Data Anal. 108, 40–51 (2017)

    Article  MathSciNet  Google Scholar 

  20. Mundnich, K., et al.: Tiles-2018: a longitudinal physiologic and behavioral data set of hospital workers. arXiv preprint arXiv:2003.08474 (2020)

  21. Novak, D., et al.: Morphology analysis of physiological signals using hidden Markov models. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 754–757. IEEE (2004)

    Google Scholar 

  22. Pierson, E., Althoff, T., Leskovec, J.: Modeling individual cyclic variation in human behavior. In: 2018 World Wide Web Conference, pp. 107–116 (2018)

    Google Scholar 

  23. Rodell, J.B., Judge, T.A.: Can “good” stressors spark “bad” behaviors? the mediating role of emotions in links of challenge and hindrance stressors with citizenship and counterproductive behaviors. J. Appl. Psychol. 94(6), 1438 (2009)

    Article  Google Scholar 

  24. Rogge, R.: The multidimensional psychological flexibility inventory (MPFI), May 2016. https://doi.org/10.13140/RG.2.1.1645.9129

  25. Saunders, J.B., Asaland, O.G., Babor, T.F., la Fuente, J.R.D., Grant, M.: Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction 89(6), 791–804 (1993)

    Google Scholar 

  26. Spielberger, C.D., Jacobs, G.A., Russell, S., Crane, R.S.: Assessment of anger: the state-trait anger scale. In: Advances in Personality Assessment. Erlbaum, Hillsdale, New Jersey (1983)

    Google Scholar 

  27. Tavabi, N., Bartley, N., Abeliuk, A., Soni, S., Ferrara, E., Lerman, K.: Characterizing activity on the deep and dark web. arXiv preprint arXiv:1903.00156 (2019)

  28. Thibaux, R., Jordan, M.I.: Hierarchical beta processes and the Indian buffet process. In: Artificial Intelligence and Statistics, pp. 564–571 (2007)

    Google Scholar 

  29. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  30. Wang, R., et al.: Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 3–14 (2014)

    Google Scholar 

  31. Ware Jr., J.E., Sherbourne, C.D.: The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Med. Care, 473–483 (1992)

    Google Scholar 

  32. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54(6), 1063 (1988)

    Article  Google Scholar 

  33. Wu, L., Yen, I.E.H., Yi, J., Xu, F., Lei, Q., Witbrock, M.: Random warping series: a random features method for time-series embedding. arXiv preprint arXiv:1809.05259 (2018)

Download references

Acknowledgements

The research was supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA Contract No 2017-17042800005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazgol Tavabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tavabi, N. et al. (2020). Learning Behavioral Representations from Wearable Sensors. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A., Hussain, M. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2020. Lecture Notes in Computer Science(), vol 12268. Springer, Cham. https://doi.org/10.1007/978-3-030-61255-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61255-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61254-2

  • Online ISBN: 978-3-030-61255-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics