Skip to main content

The Somatosensory World of the African Naked Mole-Rat

  • Chapter
  • First Online:
The Extraordinary Biology of the Naked Mole-Rat

Abstract

The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper’s active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain-insensitivity as a trait shared by several closely related African mole-rat species. In this chapter we will show how African mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.

figure a

Photo Credit: Thomas Park

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AITC:

Allyl isothiocyanate

ASIC :

Acid-sensing ion channel

CGRP :

Calcitonin gene-related peptide

CIP :

Congenital insensitivity to pain

DRG :

Dorsal root ganglia

GPCR :

G-protein coupled receptor

NALCN :

Sodium leak channel non-selective protein

NaV:

voltage-gated sodium channel

NGF:

Nerve growth factor

NK1R :

neurokinin-1 receptor

PRDM12 :

PRDI-BF1 and RIZ homology domain- containing protein 12

SP :

Substance P

TG:

Trigeminal ganglion

TRPA1 :

transient receptor potential cation channel subfamily A member 1 channel

TRPV1 :

transient receptor potential vanilloid 1 channel

TWIK1 :

Two pore-domain Weakly Inward rectifying K+ channel

References

  • Adibi M (2019) Whisker-mediated touch system in rodents: from neuron to behavior. Front Syst Neurosci 13

    Google Scholar 

  • Alpson D, Lal S (1980) Combined light- and electron-microscopic study of the rat saphenous nerve. Cells Tissues Organs 106:141–149

    Google Scholar 

  • Arcourt A, Gorham L, Dhandapani R, Prato V, Taberner FJ, Wende H, Gangadharan V, Birchmeier C, Heppenstall PA, Lechner SG (2017) Touch receptor-derived sensory information alleviates acute pain signaling and fine-tunes nociceptive reflex coordination. Neuron 93:179–193

    Google Scholar 

  • Arenas OM, Zaharieva EE, Para A, Vásquez-Doorman C, Petersen CP, Gallio M (2017) Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat Neurosci 20:1686–1693

    Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Google Scholar 

  • Bennett NC, Faulkes CG (2000) African Mole-Rats: Ecology and Eusociality. Cambridge University Press, Cambridge

    Google Scholar 

  • Bennett DLH, Woods CG (2014) Painful and painless channelopathies. Lancet Neurol 13:587–599

    Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32:1025–1043

    Google Scholar 

  • Bishop T, Marchand F, Young AR, Lewin GR, McMahon SB (2010) Ultraviolet-B-induced mechanical hyperalgesia: a role for peripheral sensitisation. Pain 150:141–152

    Google Scholar 

  • Brand A, Smith ESJ, Lewin GR, Park TJ (2010) Functional neurokinin and NMDA receptor activity in an animal naturally lacking substance P: the naked mole-rat. PLoS One 5:e15162

    Google Scholar 

  • Browe BM, Olsen AR, Ramirez C, Rickman RH, Smith ESJ, Park TJ (2020) The naked mole-rat has a functional purinergic pain pathway despite having a non-functional peptidergic pain pathway. Neurobiol Pain 8:100047

    Google Scholar 

  • Buffenstein R, Craft W (2021) The idiosyncratic physiological traits of the naked mole-rat; a resilient animal model of aging, longevity, and healthspan. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 221–254

    Google Scholar 

  • Buffenstein R, Yahav S (1991) Is the naked mole-rat Heterocephalus glaber an endothermic yet poilkilothermic mammal. J Therm Biol 16:227–232

    Google Scholar 

  • Busch-Dienstfertig M, Roth CA, Stein C (2013) Functional characteristics of the naked mole rat μ-opioid receptor. PLoS One 8(11):e79121

    Google Scholar 

  • Cao YQ, Mantyh PW, Carlson EJ, Gillespie AM, Epstein CJ, Basbaum AI (1998) Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392:390–394

    Google Scholar 

  • Catania KC, Remple MS (2002) Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain. Proc Natl Acad Sci 99:5692–5697

    Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Google Scholar 

  • Chakrabarti S, Pattison LA, Doleschall B, Rickman RH, Blake H, Callejo G, Heppenstall PA, Smith ESJ (2020) Intra-articular AAV-PHP.S mediated chemogenetic targeting of knee-innervating dorsal root ganglion neurons alleviates inflammatory pain in mice. Arthritis Rheum 72(10):1749-1758

    Google Scholar 

  • Chatelain FC, Bichet D, Douguet D, Feliciangeli S, Bendahhou S, Reichold M, Warth R, Barhanin J, Lesage F (2012) TWIK1, a unique background channel with variable ion selectivity. Proc Natl Acad Sci 109:5499–5504

    Google Scholar 

  • Chen YC, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocleous AC, et al (2015) Transcriptional regulator PRDM12 is essential for human pain perception. Nat Genet 47:803–808

    Google Scholar 

  • Chua HC, Wulf M, Weidling C, Rasmussen LP, Pless SA (2020) The NALCN channel complex is voltage sensitive and directly modulated by extracellular calcium. Sci Adv 6(17):eaaz3154

    Google Scholar 

  • Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Google Scholar 

  • Cochet-Bissuel M, Lory P, Monteil A (2014) The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 8:132

    Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Google Scholar 

  • Crish SD, Rice FL, Park TJ, Comer CM (2003) Somatosensory organization and behavior in naked mole-rats I: vibrissa-like body hairs comprise a sensory array that mediates orientation to tactile stimuli. Brain Behav Evol 62:141–151

    Google Scholar 

  • Crish SD, Dengler-Crish CM, Comer CM (2006) Population coding strategies and involvement of the superior colliculus in the tactile orienting behavior of naked mole-rats. Neuroscience 139:1461–1466

    Google Scholar 

  • Davies KT, Bennett NC, Tsagkogeorga G, Rossiter SJ, Faulkes CG (2015) Family wide molecular adaptations to underground life in African mole-rats revealed by Phylogenomic analysis. Mol Biol Evol 32:3089–3107

    Google Scholar 

  • Deacon RMJ, Dulu TD, Patel NB (2012) Naked mole-rats: behavioural phenotyping and comparison with C57BL/6 mice. Behav Brain Res 231:193–200

    Google Scholar 

  • Deuis JR, Dvorakova LS, Vetter I (2017) Methods used to evaluate pain behaviors in rodents. Front Mol Neurosci 10:284

    Google Scholar 

  • Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120:3760–3772

    Google Scholar 

  • Dulu TD, Kanui TI, Towett PK, Maloiy GM, Abelson KS (2014) The effects of oxotremorine, epibatidine, atropine, mecamylamine and naloxone in the tail-flick, hot-plate, and formalin tests in the naked mole-rat (Heterocephalus glaber). In Vivo 28:39–48

    Google Scholar 

  • Eigenbrod O, Debus KY, Reznick J, Bennett NC, Sánchez-Carranza O, Omerbašić D, Hart DW, Barker AJ, Zhong W, Lutermann H, Katandukila JV, Mgode G, Park TJ, Lewin GR (2019) Rapid molecular evolution of pain insensitivity in multiple African rodents. Science 364:852–859

    Google Scholar 

  • Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z et al (2014) Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 8:1354–1364

    Google Scholar 

  • Faulkes CG, Bennett NC (2021) Social evolution in African mole-rats - a comparative overview. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 1–33

    Google Scholar 

  • Fleischer E, Handwerker HO, Joukhadar S (1983) Unmyelinated nociceptive units in two skin areas of the rat. Brain Res 267:81–92

    Google Scholar 

  • Ford NC, Ren D, Baccei ML (2018) NALCN channels enhance the intrinsic excitability of spinal projection neurons. Pain 159:1719–1730

    Google Scholar 

  • Gerhold KA, Pellegrino M, Tsunozaki M, Morita T, Leitch DB, Tsuruda PR, Brem RB, Catania KC, Bautista DM (2013) The star-nosed mole reveals clues to the molecular basis of mammalian touch. PLoS One 8(1):e55001

    Google Scholar 

  • Gibson JM, Welker WI (1983) Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. Somatosens Mot Res 1:95–117

    Google Scholar 

  • Habib AM, Wood JN, Cox JJ (2015) Sodium channels and pain. Handb Exp Pharmacol 227:39–56

    Google Scholar 

  • Hahn JF (1971) Stimulus—response relationships in first-order sensory fibres from cat vibrissae. J Physiol 213:215–226

    Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Google Scholar 

  • Harms E, Stoetzer C, Stueber T, O'Reilly AO, Leffler A (2017) Investigation into the role of an extracellular loop in mediating proton-evoked inhibition of voltage-gated sodium channels. Neurosci Lett 661:5–10

    Google Scholar 

  • Hefti F (2019) Pharmacology of nerve growth factor and discovery of tanezumab, an anti-nerve growth factor antibody and pain therapeutic. Pharmacol Res 154:104240

    Google Scholar 

  • Heidenreich M, Lechner SG, Vardanyan V, Wetzel C, Cremers CW, De Leenheer EM, Aránguez G, Moreno-Pelayo MÁ, Jentsch TJ, Lewin GR (2012) KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci 15:138–145

    Google Scholar 

  • Henry EC, Catania KC (2006) Cortical, callosal, and thalamic connections from primary somatosensory cortex in the naked mole-rat (Heterocephalus glaber), with special emphasis on the connectivity of the incisor representation. Anat Rec A Discov Mol Cell Evol Biol 288:626–645

    Google Scholar 

  • Henry EC, Marasco PD, Catania KC (2005) Plasticity of the cortical dentition representation after tooth extraction in naked mole-rats. J Comp Neurol 485:64–74

    Google Scholar 

  • Heppenstall PA, Lewin GR (2000) Neurotrophins, nociceptors and pain. Curr Opin Anaesthesiol 13:573–576

    Google Scholar 

  • Hinman A, Chuang H -h, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci 103:19564–19568

    Google Scholar 

  • Hockley JR, González-Cano R, McMurray S, Tejada-Giraldez MA, McGuire C et al (2017) Visceral and somatic pain modalities reveal NaV1.7-independent visceral nociceptive pathways. J Physiol 595:2661–2679

    Google Scholar 

  • Hockley JRF, Taylor TS, Callejo G, Wilbrey AL, Gutteridge A, Bach K, Winchester WJ, Bulmer DC, McMurray G, Smith ESJ (2019) Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68:633–644

    Google Scholar 

  • Hockley JR, Barker KH, Taylor TS, Callejo G, Husson ZM, Bulmer DC, Smith ESJ (2020a) Acid and inflammatory sensitisation of naked mole-rat colonic afferent nerves. Mol Pain 16:1744806920903150

    Google Scholar 

  • Hockley JR, Barker KH, Taylor TS, Callejo G, Husson ZM, Bulmer DC, Smith ESJ (2020b) Acid and inflammatory sensitisation of naked mole-rat colonic afferent nerves. Mol Pain 16:1744806920903150

    Google Scholar 

  • Holtze S, Braude S, Lemma A, Koch R, Morhart M, et al (2018) The microenvironment of naked mole-rat burrows in East Africa. Afr J Ecol 56:279–289

    Google Scholar 

  • Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol:283–332

    Google Scholar 

  • Husson Z, Smith ESJ (2018) Naked mole-rat cortical neurons are resistant to acid-induced cell death. Mol Brain 11:26

    Google Scholar 

  • Illanes O, Henry J, Skerritt G (1990) Light and electron microscopy studies of the ulnar, saphenous, and caudal cutaneous sural nerves of the dog. Am J Anat 187:158–164

    Google Scholar 

  • Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, Awaya Y, Matsuda I (1996) Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 13:485–488

    Google Scholar 

  • Jancsó G, Kiraly E, Jancsó-Gábor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743

    Google Scholar 

  • Jarvis JUM (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–573

    Google Scholar 

  • Jarvis JUM, O’Riain MJ, Bennett NC, Sherman PW (1994) Mammalian eusociality: A family affair. Trends Ecol Evol 9:47–51

    Google Scholar 

  • Jenq CB, Coggeshall RE (1984) Regeneration of axons in tributary nerves. Brain Res 310:107–121

    Google Scholar 

  • Jenq CB, Coggeshall RE (1985) Numbers of regenerating axons in parent and tributary peripheral nerves in the rat. Brain Res 326:27–40

    Google Scholar 

  • Jenq CB, Hulsebosch CE, Coggeshall RE, Perez-Polo JR (1984) The effects of nerve growth factor and its antibodies on axonal numbers in the medial gastrocnemius nerve of the rat. Brain Res 299:9–14

    Google Scholar 

  • Jones NG, Slater R, Cadiou H, McNaughton P, McMahon SB (2004) Acid-induced pain and its modulation in humans. J Neurosci 24:10974–10979

    Google Scholar 

  • Jordt S-E, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Google Scholar 

  • Jørgensen KB, Krogh-Jensen K, Pickering DS, Kanui TI, Abelson KS (2016) Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 202:7–15

    Google Scholar 

  • Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA (2010) Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464:597–600

    Google Scholar 

  • Kanui TI, Hole K (1990) Morphine induces aggression but not analgesia in the naked mole-rat (Heterocephalus glaber). Comp Biochem Physiol C 96:131–133

    Google Scholar 

  • Kanui TI, Karim F, Towett PK (1993) The formalin test in the naked mole-rat (Heterocephalus glaber): analgesic effects of morphine, nefopam and paracetamol. Brain Res 600:123–126

    Google Scholar 

  • Karim F, Kanui TI, Mbugua S (1993) Effects of codeine, naproxen and dexamethasone on formalin-induced pain in the naked mole-rat. NeuroReport 4:25–28

    Google Scholar 

  • Khan A, Kyle JW, Hanck DA, Lipkind GM, Fozzard HA (2006) Isoform-dependent interaction of voltage-gated sodium channels with protons. J Physiol 576:493–501

    Google Scholar 

  • Koltzenburg M, Stucky CL, Lewin GR (1997) Receptive properties of mouse sensory neurons innervating hairy skin. J Neurophysiol 78:1841–1850

    Google Scholar 

  • Kschonsak M, Chua HC, Noland CL, Weidling C, Clairfeuille T, Bahlke OØ, Ameen AO, Li ZR, Arthur CP, Ciferri C, Pless SA, Payandeh J (2020) Structure of the human sodium leak channel NALCN. Nature 587:313–318

    Google Scholar 

  • Lechner SG, Lewin GR (2013) Hairy sensation. Physiology 28:142–150

    Google Scholar 

  • Leclercq S, Braekman JC, Daloze D, Pasteels JM (2000) The defensive chemistry of ants. Springer, Vienna, pp 115–229

    Google Scholar 

  • Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, et al (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45:1399–1404

    Google Scholar 

  • Lewin G (2020) The evolutionary history of nerve growth factor and nociception. Pain. 161 Suppl 1(1):S36-S47

    Google Scholar 

  • Lewin GR, McMahon SB (1991a) Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat. J Neurophysiol 66:1205–1217

    Google Scholar 

  • Lewin GR, McMahon SB (1991b) Physiological properties of primary sensory neurons appropriately and inappropriately innervating skeletal muscle in adult rats. J Neurophysiol 66:1218–1231

    Google Scholar 

  • Lewin GR, Mendell LM (1994) Regulation of cutaneous C-fiber heat nociceptors by nerve growth factor in the developing rat. J Neurophysiol 71:941–949

    Google Scholar 

  • Lewin GR, Moshourab R (2004) Mechanosensation and pain. J Neurobiol 61:30–44

    Google Scholar 

  • Lewin GR, Ritter AM, Mendell LM (1993) Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci 13:2136–2148

    Google Scholar 

  • Lewin GR, Rueff A, Mendell LM (1994) Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur J Neurosci 6:1903–1912

    Google Scholar 

  • Lewin GR, Lechner SG, Smith ESJ (2014) Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Handb Exp Pharmacol:251–282

    Google Scholar 

  • Li CL, Li KC, Wu D, Chen Y, Luo H (2016) Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 26:83–102

    Google Scholar 

  • Lichtenstein SH, Carvell GE, Simons DJ (1990) Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens Mot Res 7:47–65

    Google Scholar 

  • Liu Z, Wang W, Zhang TZ, Li GH, He K. et al (2014) Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals. Proc Biol Sci 281:20132950

    Google Scholar 

  • Lu B, Su Y, Das S, Liu J, Xia J, Ren D (2007) The Neuronal Channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129:371–383

    Google Scholar 

  • Luiz AP, Wood JN (2016) Sodium channels in pain and cancer. In: JE Barrett (ed) Advances in Pharmacology. Academic Press, San Diego, pp 153–178

    Google Scholar 

  • Marzban H, Hoy N, Aavani T, Sarko DK, Catania KC, Hawkes R (2011) Compartmentation of the cerebellar cortex in the naked mole-rat (Heterocephalus glaber). Cerebellum 10:435–448

    Google Scholar 

  • McDermott LA, Weir GA, Themistocleous AC, Segerdahl AR, Blesneac I, et al (2019) Defining the functional role of NaV1.7 in human nociception. Neuron 101:905–919

    Google Scholar 

  • Milenkovic N, Frahm C, Gassmann M, Griffel C, Erdmann B, Birchmeier C, Lewin GR, Garratt AN (2007) Nociceptive tuning by stem cell factor/c-kit signaling. Neuron 56:893–906

    Google Scholar 

  • Milenkovic N, Wetzel C, Moshourab R, Lewin GR (2008) Speed and temperature dependences of mechanotransduction in afferent fibers recorded from the mouse saphenous nerve. J Neurophysiol 100:2771–2783

    Google Scholar 

  • Milenkovic N, Zhao WJ, Walcher J, Albert T, Siemens J, Lewin GR, Poulet JF (2014) A somatosensory circuit for cooling perception in mice. Nat Neurosci 17:1560–1566

    Google Scholar 

  • Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT (2020) The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 116:480–493

    Google Scholar 

  • Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR (2013) Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 591:5555–5574

    Google Scholar 

  • Nagy JI, Hunt SP (1982) Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin. Neuroscience 7:89–97

    Google Scholar 

  • Ochoa J, Mair WG (1969) The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells. Acta Neuropathol 13:197–216

    Google Scholar 

  • Oda M, Kurogi M, Kubo Y, Saitoh O (2016) Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems. Chem Senses 41:261–272

    Google Scholar 

  • Omerbašić D, Smith ES, Moroni M, Homfeld J, Eigenbrod O, Bennett NC, Reznick J, Faulkes CG, Selbach M, Lewin GR (2016) Hypofunctional TrkA accounts for the absence of pain sensitization in the African naked mole-rat. Cell Rep 17:748–758

    Google Scholar 

  • Paricio-Montesinos R, Schwaller F, Udhayachandran A, Rau F, Walcher J, Evangelista R, Vriens J, Voets T, Poulet JFA, Lewin GR (2020) The sensory coding of warm perception. Neuron 106:830–841

    Google Scholar 

  • Park TJ, Comer C, Carol A, Lu Y, Hong HS, Rice FL (2003) Somatosensory organization and behavior in naked mole-rats: II. Peripheral structures, innervation, and selective lack of neuropeptides associated with thermoregulation and pain. J Comp Neurol 465:104–120

    Google Scholar 

  • Park TJ, Lu Y, Jüttner R, Smith ES, Hu J, Brand A, Wetzel C, Milenkovic N, Erdmann B, Heppenstall PA, Laurito CE, Wilson SP, Lewin GR (2008) Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol 6:e13

    Google Scholar 

  • Park TJ, Reznick J, Peterson BL, Blass G, Omerbašić D, et al (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356:307–311

    Google Scholar 

  • Park TJ, Smith ESJ, Reznick J, Bennett NC Applegate DT, Larson J, Lewin GR (2021) African naked mole-rats demonstrate extreme tolerance to hypoxia and hypercapnia. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 255–269

    Google Scholar 

  • Pattison LA, Callejo G, St John Smith E (2019) Evolution of acid nociception: Ion channels and receptors for detecting acid. Philos Trans R Soc B Biol Sci 374:20190291

    Google Scholar 

  • Perl ER (1996) Cutaneous polymodal receptors: Characteristics and plasticity. Prog Brain Res 113:21–37

    Google Scholar 

  • Petty BG, Cornblath DR, Adornato BT, Chaudhry V, Flexner C, Wachsman M, Sinicropi D, Burton LE, Peroutka SJ (1994) The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol 36:244–246

    Google Scholar 

  • Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR (2014) Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520

    Google Scholar 

  • Poulson SJ, Aldarraji A, Arain II, Dziekonski N, Motlana K, Riley R, Holmes MM, Martin LJ (2020) Naked mole-rats lack cold sensitivity before and after nerve injury. Mol Pain 16:1744806920955103

    Google Scholar 

  • Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Google Scholar 

  • Rafel E, Alberca R, Bautista J, Navarrete MD, Lazo J (1980) Congenital insensitivity to pain with anhidrosis. Muscle Nerve 3:216–220. 

    Google Scholar 

  • Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C et al (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–125

    Google Scholar 

  • Reeh PW, Steen KH (1996) Tissue acidosis in nociception and pain. Prog Brain Res 113:143–151

    Google Scholar 

  • Reeve HK (1992) Queen activation of lazy workers in colonies of the eusocial naked mole-rat. Nature 358:147–149

    Google Scholar 

  • Reznick J, Park TJ, Lewin GR (2021) A sweet story of metabolic innovation in the naked mole-rat. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 271–286

    Google Scholar 

  • Rossato MF, Rigo FK, Oliveira SM, Guerra GP, Silva CR, Cunha TM, Gomez MV, Ferreira J, Trevisan G (2018) Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents. Eur J Pharmacol 828:42–51

    Google Scholar 

  • Ruby JG, Smith M, Buffenstein R (2018) Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. elife 7:e31157

    Google Scholar 

  • Rutlin M, Ho CY, Abraira VE, Cassidy C, Bai L, Woodbury CJ, Ginty DD (2014) The cellular and molecular basis of direction selectivity of Aδ-LTMRs. Cell 159:1640–1651

    Google Scholar 

  • Saito S, Banzawa N, Fukuta N, Saito CT, Takahashi K, Imagawa T, Ohta T, Tominaga M (2014) Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison. Mol Biol Evol 31:708–722

    Google Scholar 

  • Salmon AM, Damaj MI, Marubio LM, Epping-Jordan MP, Merlo-Pich E, Changeux JP (2001) Altered neuroadaptation in opiate dependence and neurogenic inflammatory nociception in αCGRP-deficient mice. Nat Neurosci 4:357–358

    Google Scholar 

  • Sambongi Y, Takeda K, Wakabayashi T, Ueda I, Wada Y, Futai M (2000) Caenorhabditis elegans senses protons through amphid chemosensory neurons. NeuroReport 11:2229–2232

    Google Scholar 

  • Scadding JW (1980) The permanent anatomical effects of neonatal capsaicin on somatosensory nerves. J Anat 131:471–482

    Google Scholar 

  • Schuhmacher L-N, Smith ESJ (2016) Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat. Mol Brain 9:97

    Google Scholar 

  • Schuhmacher L-N, Callejo G, Srivats S, Smith ESJ (2018) Naked mole-rat acid-sensing ion channel 3 forms nonfunctional homomers, but functional heteromers. J Biol Chem 293:1756–1766

    Google Scholar 

  • Schwab BW, Arezzo JC, Paldino AM, Flohe L, Matthiessen T, Spencer PS (1984) Rabbit sural nerve responses to chronic treatment with thalidomide and supidimide. Muscle Nerve 7:362–368

    Google Scholar 

  • Schwarz MG, Namer B, Reeh PW, Fischer MJM (2017) TRPA1 and TRPV1 antagonists do not inhibit human acidosis-induced pain. J Pain 18:526–534

    Google Scholar 

  • Silverman JD, Kruger L (1990) Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers. J Neurocytol 19:789–801

    Google Scholar 

  • Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–249

    Google Scholar 

  • Smith ESJ, Lewin GR (2009) Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:1089–1106

    Google Scholar 

  • Smith ESJ, Blass GRC, Lewin GR, Park TJ (2010) Absence of histamine-induced itch in the African naked mole-rat and “rescue” by Substance P. Mol Pain 6:29

    Google Scholar 

  • Smith ESJ, Omerbašić D, Lechner SG, Anirudhan G, Lapatsina L, Lewin GR (2011) The molecular basis of acid insensitivity in the African naked mole-rat. Science 334:1557–1560

    Google Scholar 

  • Sneddon LU, Braithwaite VA, Gentle MJ (2003) Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc R Soc Lond Ser B Biol Sci 270:1115–1121

    Google Scholar 

  • Smith ESJ, Purfürst B, Grigoryan T, Park TJ, Bennett NC, Lewin GR (2012) Specific paucity of unmyelinated C-fibers in cutaneous peripheral nerves of the African naked-mole rat: comparative analysis using six species of Bathyergidae. J Comp Neurol 520:2785–2803

    Google Scholar 

  • Smith ESJ (2018) Advances in understanding nociception and neuropathic pain. J Neurol 265:231–238

    Google Scholar 

  • Steen KH, Reeh PW (1993) Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 154:113–116

    Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Google Scholar 

  • Stucky CL, Lewin GR (1999) Isolectin B4-positive and -negative nociceptors are functionally distinct. J Neurosci 19 6497–505

    Google Scholar 

  • Stucky CL, Rossi J, Airaksinen MS, Lewin GR (2002) GFR α2/neurturin signalling regulates noxious heat transduction in isolectin B4−binding mouse sensory neurons. J Physiol 545

    Google Scholar 

  • Stürzebecher AS, Hu J, Smith ES, Frahm S, Santos-Torres J, Kampfrath B, Auer S, Lewin GR, Ibañez-Tallon I (2010) An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors. J Physiol 588:1695–1707

    Google Scholar 

  • Swanson AG, Buchan GC, Alvord EC (1965) Anatomic changes in congenital insensitivity to pain. Arch Neurol 12:12–18

    Google Scholar 

  • Tobin DM, Bargmann CI (2004) Invertebrate nociception: behaviors, neurons and molecules. J Neurobiol 61:161–174

    Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836

    Google Scholar 

  • Todd AJ (2017) Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol Pain 13:174480691769300

    Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Google Scholar 

  • Towett PK, Kanui TI (1993) Effects of pethidine, acetylsalicylic acid, and indomethacin on pain and behavior in the mole-rat. Pharmacol Biochem Behav 45:153–159

    Google Scholar 

  • Towett PK, Kanui TI, Juma FD (2006) Stimulation of mu and delta opioid receptors induces hyperalgesia while stimulation of kappa receptors induces antinociception in the hot plate test in the naked mole-rat (Heterocephalus glaber). Brain Res Bull 71:60–68

    Google Scholar 

  • Towett PK, Kanui TI, Maloiy GM, Juma F, Olongida Ole Miaron J (2009) Activation of micro, delta or kappa opioid receptors by DAMGO, DPDPE, U-50488 or U-69593 respectively causes antinociception in the formalin test in the naked mole-rat (Heterocephalus glaber). Pharmacol Biochem Behav 91:566–572

    Google Scholar 

  • Treede RD, Meyer RA, Raja SN, Campbell JN (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 38:397–421

    Google Scholar 

  • Tuttle AH, Molinaro MJ, Jethwa JF, Sotocinal SG, Prieto JC, Styner MA, Mogil JS, Zylka MJ (2018) A deep neural network to assess spontaneous pain from mouse facial expressions. Mol Pain 14:174480691876365

    Google Scholar 

  • Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002) Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 110:1185–1190

    Google Scholar 

  • Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Hjerling-Leffler J, Haeggström J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153

    Google Scholar 

  • Walcher J, Ojeda-Alonso J, Haseleu J, Oosthuizen MK, Rowe AH, Bennett NC, Lewin GR (2018) Specialized mechanoreceptor systems in rodent glabrous skin. J Physiol 596:4995–5016

    Google Scholar 

  • Wang R, Lewin GR (2011) The Cav3.2 T-type calcium channel regulates temporal coding in mouse mechanoreceptors. J Physiol 589:2229–2243

    Google Scholar 

  • Wetzel C, Hu J, Riethmacher D, Benckendorff A, Harder L et al (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445:206–209

    Google Scholar 

  • Wetzel C, Pifferi S, Picci C, Gök C, Hoffmann D et al (2017) Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nat Neurosci 20:209–218

    Google Scholar 

  • Yang K, Kumamoto E, Furue H, Yoshimura M (1998) Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 255:135–138

    Google Scholar 

  • Zions M, Meehan EF, Kress ME, Thevalingam D, Jenkins EC, Kaila K, Puskarjov M, McCloskey DP (2020) Nest carbon dioxide masks GABA-dependent seizure susceptibility in the naked mole-rat. Curr Biol 30

    Google Scholar 

  • Zucker E, Welker WI (1969) Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res 12:138–156

    Google Scholar 

Download references

Acknowledgements

The work in the authors laboratories has been supported by the following agencies: ERC advanced grants to GRL (AdG 789128 and AdG 294678), a National Science Foundation (grant 1655494) to T.J.P. and a CRUK Grant (C56829/A22053) to ESS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary R. Lewin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewin, G.R., Smith, E.S.J., Reznick, J., Debus, K., Barker, A.J., Park, T.J. (2021). The Somatosensory World of the African Naked Mole-Rat. In: Buffenstein, R., Park, T.J., Holmes, M.M. (eds) The Extraordinary Biology of the Naked Mole-Rat. Advances in Experimental Medicine and Biology, vol 1319. Springer, Cham. https://doi.org/10.1007/978-3-030-65943-1_7

Download citation

Publish with us

Policies and ethics