Skip to main content

Cache-Aided Multi-message Private Information Retrieval

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2020)

Abstract

We consider the problem of multi-message private information retrieval (MPIR) from N non-colluding and replicated servers when the user is equipped with a cache that holds an uncoded fraction r from each of the K stored messages in the servers. We assume that the servers are unaware of the cache content. We investigate \(D_{P}^*(r)\), which is the optimal download cost normalized by the message size, as a function of K, N, r, P. For a fixed K, N, we develop an inner bound (converse bound) for the \(D_{P}^*(r)\) curve. The inner bound is a piece-wise linear function in r. For the achievability, we propose specific schemes that exploit the cached as private side information to achieve some corner points. We obtain an outer bound (achievability) for any caching ratio by memory-sharing between these corner points. Thus, the outer bound is also a piece-wise linear function in r. The inner and the outer bounds match for the cases where the number of desired messages P is at least half of the number of the overall stored messages K. Furthermore, the bounds match in two specific regimes for the case \(\frac{K}{P} > 2\) and \(\frac{K}{P} \in \mathbb {N}\): the very high ratio regime, i.e., \(r \ge \frac{1}{N+1}\) and the very low ratio regime, i.e., \(r \le \frac{(N-1)P \alpha _1}{ N\left( \sum _{k=2}^K \left( {\begin{array}{c}K\\ k\end{array}}\right) \alpha _k -\sum _{k=2}^{K-P} \left( {\begin{array}{c}K-P\\ k\end{array}}\right) \alpha _k \right) + (N-1)P \alpha _1}\). Finally, the bounds meet in one specific regime for arbitrarily fixed K, P, N: the very high ratio regime, i.e., \(r \ge \frac{1}{N+1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banawan, K., Ulukus, S.: Multi-message private information retrieval: capacity results and near-optimal schemes. IEEE Trans. Inform. Theory 64(10), 6842–6862 (2018). https://doi.org/10.1109/TIT.2018.2828310

    Article  MathSciNet  MATH  Google Scholar 

  2. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 41–50, October 1995. https://doi.org/10.1109/SFCS.1995.492461

  3. Shah, N.B., Rashmi, K.V., Ramchandran, K.: One extra bit of download ensures perfectly private information retrieval. In: 2014 IEEE International Symposium on Information Theory, pp. 856–860, June 2014. https://doi.org/10.1109/ISIT.2014.6874954

  4. Sun, H., Jafar, S.A.: The capacity of private information retrieval. IEEE Trans. Inform. Theory 63(7), 4075–4088 (2017). https://doi.org/10.1109/TIT.2017.2689028

    Article  MathSciNet  MATH  Google Scholar 

  5. Wei, Y., Banawan, K.A., Ulukus, S.: Fundamental limits of cache-aided private information retrieval with unknown and uncoded prefetching. CoRR abs/1709.01056 (2017). http://arxiv.org/abs/1709.01056

Download references

Acknowledgment

This work is partially supported by the National Natural Science Foundation of China under Grants 62071115, 61971135, National Key Research and Development Project under Grant 2019YFE0123600, the Research Fund of National Mobile Communications Research Laboratory, Southeast University (No. 2020A03), and the Six talent peaks project in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Liu .

Editor information

Editors and Affiliations

A Proof of Corollary 1

A Proof of Corollary 1

Since both \(\overline{D}_{P}(r)\) and \(\underline{D}_{P}(r)\) are piecewise linear function of r, all we have to do to prove that they are equal at some interval is to prove that the vertices are the same. First, let us note that

$$\begin{aligned} r_1&= 0\end{aligned}$$
(65)
$$\begin{aligned} r_2&= \frac{(N-1)P \alpha _1}{ N\left( \sum _{k=2}^K \left( {\begin{array}{c}K\\ k\end{array}}\right) \alpha _k -\sum _{k=2}^{K-P} \left( {\begin{array}{c}K-P\\ k\end{array}}\right) \alpha _k \right) + (N-1)P \alpha _1} \end{aligned}$$
(66)

Then, we note that

$$\begin{aligned} \overline{D}_{P}(r_2)&= \frac{N \left( \sum _{k=2}^K \left( {\begin{array}{c}K\\ k\end{array}}\right) \alpha _k \right) }{ N\left( \sum _{k=2}^K \left( {\begin{array}{c}K\\ k\end{array}}\right) \alpha _k -\sum _{k=2}^{K-P} \left( {\begin{array}{c}K-P\\ k\end{array}}\right) \alpha _k \right) + (N-1)P \alpha _1}\end{aligned}$$
(67)
$$\begin{aligned}&= \frac{1}{(1-\frac{1}{N})U} \sum _{i=1}^{P} \gamma _i r_i^{K-P} \left[ (N-1)(N^{\frac{K}{P}}-1) -\frac{PK(N-1)}{\gamma _i} \right] \end{aligned}$$
(68)

where \(U = N\left( \sum _{k=2}^K \left( {\begin{array}{c}K\\ k\end{array}}\right) \alpha _k -\sum _{k=2}^{K-P} \left( {\begin{array}{c}K-P\\ k\end{array}}\right) \alpha _k \right) + (N-1)P \alpha _1\), \(\alpha _k=\sum _{i=1}^{P} \gamma _i r_i^{K-P-k}\).

Further, we note from (20), by choosing \(r = r_2\), we have

$$\begin{aligned} \underline{D}_{P}(r_2)&\ge \sum _{i=0}^{ \frac{K}{P} - 1} \frac{1}{N^{i}} \left[ 1-r_{2} \left( \frac{K}{P} - i \right) \right] \end{aligned}$$
(69)
$$\begin{aligned}&= \frac{1-(\frac{1}{N})^{\frac{K}{P}}}{1-\frac{1}{N}} - \frac{(N-1)P \alpha _1}{U} \left[ \frac{ \frac{K}{P}- \frac{1}{N}(1 - (\frac{1}{N})^{\frac{K}{P}})}{(1-\frac{1}{N})^{2}}\right] \end{aligned}$$
(70)
$$\begin{aligned}&= \frac{1}{(1-\frac{1}{N})U} \left[ \left( 1-\frac{1}{N^{\frac{K}{P}}}\right) U -(N-1)P\alpha _1 \left( \frac{ \frac{K}{P}- \frac{1}{N}(1 - (\frac{1}{N})^{\frac{K}{P}})}{(1-\frac{1}{N})}\right) \right] \end{aligned}$$
(71)
$$\begin{aligned}&= \frac{1}{(1-\frac{1}{N})U} \left[ (N-1)P\alpha _1 \left( \left( 1+\frac{1}{N-1} \right) \left( 1-\frac{1}{N^{\frac{K}{P}}} \right) - \frac{K}{P} \right) \right] \end{aligned}$$
(72)
$$\begin{aligned}&+ \frac{1}{(1-\frac{1}{N})U} \left[ N \left( 1-\frac{1}{N^{\frac{K}{P}}}\right) \sum _{i=1}^{P} \gamma _i r_i^{K-P} \left( N^{\frac{K}{P}} - N^{\frac{K}{P} - 1} -\frac{P}{\gamma _i} \right) \right] \end{aligned}$$
(73)
$$\begin{aligned}&= \frac{1}{(1-\frac{1}{N})U} \sum _{i=1}^{P} \gamma _i r_i^{K-P} \left[ (N-1)(N^{\frac{K}{P}}-1) -\frac{PK(N-1)}{\gamma _i} \right] \end{aligned}$$
(74)
$$\begin{aligned}&= \overline{D}_{P}(r_2) \end{aligned}$$
(75)

Thus, since \( \underline{D}_{P}(r_2) \le \overline{D}_{P}(r_2)\) by definition, (75) implies \( \underline{D}_{P}(r_2) = \overline{D}_{P}(r_2)\). We also note that \( \underline{D}_{P}(r_1) = \overline{D}_{P}(r_1)\). Since both \(\overline{D}_{P}(r)\) and \(\underline{D}_{P}(r)\) are piecewise linear function of r, and since \( \underline{D}_{P}(r_2) = \overline{D}_{P}(r_2) \) and \( \underline{D}_{P}(r_1) = \overline{D}_{P}(r_1)\), we have \( \underline{D}_{P}(r) = \overline{D}_{P}(r) = D^{*}_{P}(r)\) for \(r_1 \le r \le r_{2}\). Thus we complete the proof of corollary 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Liu, N., Kang, W. (2021). Cache-Aided Multi-message Private Information Retrieval. In: Gao, H., Fan, P., Wun, J., Xiaoping, X., Yu, J., Wang, Y. (eds) Communications and Networking. ChinaCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-67720-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67720-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67719-0

  • Online ISBN: 978-3-030-67720-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics