Skip to main content

Geothermal Probes

  • Chapter
  • First Online:
Geothermal Energy
  • 2830 Accesses

Abstract

Geothermal probes are liquid-filled tubes installed in a borehole. There are different types of geothermal probes including single U-tube probes, double U-tube probes and coaxial probes. Cool liquid flows downward in the tubes and accumulates heat from the surrounding ground. The warmed liquid turns around in the U-shaped foot at bottom hole and flows back to the heat pump at the surface. The heat pump uses the extracted ground heat to increase the fluid temperature of a secondary cycle so that it can be used for heating purposes. To promote sustainability and long term operation of the heating system it is important to limit the withdrawal of thermal energy from the ground during the annual house heating period to the natural heat influx to the reservoir. Heat extraction must be balanced by natural regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña, J. & Palm, B., 2009. Local Conduction Heat Transfer in U-pipe Borehole Heat Exchangers, pp. 6, Excerpt from the Proceedings of the COMSOL Conference, Milan.

    Google Scholar 

  • ASHRAE Handbook, 1997. Ground source heat pumps - design of geothermal systems for commercial and institutional buildings. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), Atlanta, GA.

    Google Scholar 

  • Basetti, S., Rohner, E., Signorelli, S. & Matthey, B., 2006. Documentation of cases of damage of geothermal probes (in German), pp. 65, Schlussbericht Energie Schweiz, Zürich.

    Google Scholar 

  • Carslaw, H. S. & Jaeger, J. C., 1959. Conduction of Heat in Solids. Oxford at the Clarendon Press, Oxford, 342 pp.

    Google Scholar 

  • Diersch, H. J., 1994. FEFOLW, Finite Element Subsurface Flow & Transport Simulation System. Reference Manual.

    Google Scholar 

  • Eskilson, P., 1987. Thermal Analysis of Heat Extraction Boreholes. Department of Mathematical Physics, Lund Institute of Technology, Lund, Sweden.

    Google Scholar 

  • Eugster, W. J., 1998. Longterm behavior of the geothermal probes at Elgg (Zurich, Switzerland) (in German). In: Projekt 102, Polydynamics, pp. 38, Schlussbericht PSEL, Zürich.

    Google Scholar 

  • Eugster, W. J., 2001. Langzeitverhalten der Erdwärmesondenanlage in Elgg/ZH.- Schlussbericht DSI-Projekt 42478, im Auftrag des Bundesamtes für Energie, 14 S., Zürich.

    Google Scholar 

  • Forrer, S., Mégel, T., Rohner, E. & Wagner, R., 2008. Better planning security for geothermal probe projects (in German). bbr Fachmagazin für Brunnen- und Leitungsbau, 5, 42–47.

    Google Scholar 

  • Gehlin, S., 2002. Thermal Response Test, Method Development and Evaluation. Unpub. Doctoral Thesis, University of Technology, Luleå, Sweden.

    Google Scholar 

  • Gehlin, S. & Nordell, B., 1997. Thermal Response Test – a Mobile Equipement for Determining Thermal Resistance of Boreholes. In: Proc. 7th International Conference on Thermal Energy Storage Megastock ‘97.

    Google Scholar 

  • Greber, E., Leu, W. & Wyss, R., 1995. Erdgasindikationen in der Schweiz.- Schweizer Ingenieur und Architekt, 24, 567–572.

    Google Scholar 

  • Grimm, M., Stober, I., Kohl, T. & Blum, P., 2014. Damage Analysis Drilling Geothermal Probes (Schadensfallanalyse von Erdwärmesondenbohrungen in Baden-Württemberg). Grundwasser, 19/4, 275–286 (DOI https://doi.org/10.1007/s00767-014-0269-1).

  • Gustafsson, A. M., 2006. Thermal Response Test – Numerical simulations and analysis. Unpub. Licentiate Thesis, University of Technology, Luleå, Sweden.

    Google Scholar 

  • Hellström, G., 1999. Thermal performance of borehole heat exchangers. In: The second Stockton International Geothermal Conference, 16/03.

    Google Scholar 

  • Hellström, G. & Sanner, B., 2000. EED Earth Energy Designer, pp. Computer Program for Borehole Heat Exchangers, Lund University Sweden.

    Google Scholar 

  • Huber, A., 2008. Code EWS, Comptuing Geothermal Probes (in German). Huber Energietechnik AG.

    Google Scholar 

  • Hurtig, E., Großwig, S. & Kasch, M., 1997. Fiberoptical temperature measurement: Montoring the temperature field at geothermal probe sites. Geothermische Energie, 5(18), 31–34.

    Google Scholar 

  • Kohl, T. & Hopkirk, R. J., 1995. “FRACTURE” a simulation code for forced fluid flow and transport in fractured porous rock. Geothermics, 24, 345–359.

    Google Scholar 

  • Mogensen, P., 1983. Fluid to Duct Wall Heat Transfer in Duct System Heat Storages. Proc. Int. Conf. Subs. Heat Storage, 652–657.

    Google Scholar 

  • Pahud, D., 1998. PILESIM: Simulation Tool of Heat Exchanger Pile System, Laboratory of Energy Systems, Swiss Federal Institute of Technology, Lausanne.

    Google Scholar 

  • Parkhurst, D. L. & Appelo, C. A. J., 1999. User’s guide to PHREEQC (version 2) – a computer program for speciation, batchreaction, one dimensional transport, and inverse geochemical calculations. In: Water-Resources Investigations Report 99–4259, pp. 312, U.S. Geological Survey, Denver, Colorado.

    Google Scholar 

  • Puttagunta, S., Aldrich, R. A., Owens, D. & Mantha, P., 2010. Residential Ground-Source Heat Pumps: In-Field System Performance and Energy Modeling. GRC Transactions, 34, 941–948.

    Google Scholar 

  • Reay, D. & Kew, P., 2013. Heat Pipes: Theory, Design and Applications. Sixth edition, Butterworth-Heinemann, Elsevier, 288 p.

    Google Scholar 

  • Riegger, M., Heidinger, P., Lorinser, B. & Stober, I., 2012. Using fiberoptical temperature sensors for verifying the quality of grouting of geothermal probes (in German). Grundwasser, 17/2, 91–103, Springer Verlag (DOI https://doi.org/10.1007/s00767-012-0192-2).

  • Ruck, W., Adinolfi, M. & Weber, W., 1990. Chemical and environmental aspects of heat storage in the subsuface. Z. Angew. Geowiss.(9), 119–129.

    Google Scholar 

  • Sabharwall, P., 2009. Engineering Design Elements of a Two-Phase Thermosyphon to Transfer NGNP Thermal Energy to a Hydrogen Plant. Idaho National Laboratory, Report prepared for DOE, INL/EXT-09–15383.

    Google Scholar 

  • Sanner, B. & Chant, V. G., 1992. Seasonal Cold Storage in the Ground using Heat Pumps. Newsletter IEA Heat Pump Center, 10(1), 4–7.

    Google Scholar 

  • Sanner, B. & Hellström, G., 1996. “Earth Energy Designer”, Software for Dimensioning Geothermal Probes. Tagungsband 4. Geotherm. Fachtagung in Konstanz (1996), S. 326-333.

    Google Scholar 

  • Sanner, B., Reuss, M. & Mands, E., 2000. Thermal Response Test – Experiences in Germany. In: Proceedings Terrastock 2000, 8th International Conference on Thermal Energy Storage, pp. 177–182, Stuttgart, Germany.

    Google Scholar 

  • Schmidt, T., Mangold, D. & Müller-Steinhagen, H., 2003. Central solar heating plants with seasonal storage in Germany. Elsevier Ltd. Solar Energy, 76 (1–3), 165–174.

    Google Scholar 

  • Signorelli, S., 2004. Geoscientific Investigations for the Use of Shallow Low-Enthalpy Systems. In: ETH No. 15519, pp. 157, Dissertation of the Swiss Federal Institute of Technology Zurich, Zurich.

    Google Scholar 

  • Theis, C. V., 1935. The Relation between the lowering of the Piezonetric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage. Trans. AGU, 519–524.

    Google Scholar 

  • VDI, 2001. Use of suburface thermal resources (in German). Union of German Engineers (VDI), Richtlinienreihe, 4640.

    Google Scholar 

  • Vienken, T., Kreck, M. & Dietrich, P., 2019. Monitoring the impact of intensive shallow geothermal energy use on groundwater temperatures in a residential neighborhood. Geothermal Energy, 8, 14 p.

    Google Scholar 

  • Wagner, R. & Clauser, C., 2005. Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity. Journal of geophysics and engineering, 2, 349–356.

    Google Scholar 

  • Weast, R. C. & Selby, S. M. e., 1967. CRC Handbook of chemistry and physics (48th edition). CRC Press Cleveland, Ohio, USA.

    Google Scholar 

  • Wyss, R., 2001. The blowout at the geothermal probe wellbore at Wilen (Obwalden, Switzrland) (in German). Bull. angew. Geol., 6(1), 25-40.

    Google Scholar 

  • Yu, X., Zhang, Y., Deng, N., Ma, H., & Dong, S., 2016. Thermal response test for ground source heat pump based on constant temperature and heat-flux methods. Applied Thermal Engineering, 93, 678–682.

    Google Scholar 

  • Zapp, F. J. & Rosinski, C., 2007. Effects of heat transfer fluid parameters on the transfer of thermal energy of thermal ground probes (in German). In: Der Geothermiekongress, Bochum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stober, I., Bucher, K. (2021). Geothermal Probes. In: Geothermal Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-71685-1_6

Download citation

Publish with us

Policies and ethics