Skip to main content

Cerebellum-Like Systems in Actinopterygian Fishes with a Special Focus on the Diversity of Cerebellum-Like System in the Mesencephalon

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

In addition to the cerebellum, most vertebrates possess cerebellum-like structures with components similar to the molecular layer, granule cells, and Purkinje cells. Most of such cerebellum-like structures situate in the medulla oblongata. In actinopterygian fishes, however, an additional cerebellum-like system is present in the mesencephalon. The torus longitudinal is the granule layer-like structure that sends parallel fiber-like axons to the most superficial layer of the optic tectum, or the stratum marginale. Pyramidal cells or type I cells of the optic tectum, which send ascending dendrites to the stratum marginale, are Purkinje cell-like neurons. This chapter introduces morphology, neural circuitry, and functions of the cerebellum-like systems, with a special focus on the mesencephalic cerebellum-like system in actinopterygian fishes. A recent study suggests that the mesencephalic cerebellum-like system is involved in the visual attention shift, although further studies are necessary to understand fully the significance of this peculiar cerebellum-like system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUR:

Auricula cerebelli

CC:

Corpus cerebelli

CC4:

Lobule 4 of corpus cerebelli

CCg:

Granular layer of corpus cerebelli

CLS:

Cerebellum-like system

CrC:

Cerebellar crest

DCN:

Dorsal cochlear nucleus

dlz:

Dorsolateral zone of mormyrid ELL

DO:

Descending octaval nucleus

DOdm:

Dorsomedial zone of DO

DON:

Dorsal octavolateral nucleus

EG:

Eminentia granularis

EGp:

Posterior part of EG

ELL:

Electrosensory lateral line lobe

flm:

Medial longitudinal fascicle

EOD:

Electric organ discharge

GR:

Corpus glomerulosum pars rotunda

GP:

Granule population of McCormick and Hernandez (1996)

HB:

Habenula

IP:

Interpeduncular nucleus

l:

Lateral fiber part of TL

L:

Lateral granular cell part of TL

LC:

Lobus caudalis

LCg:

Granular layer of LC

LFN:

Lateral funicular nucleus

LI:

Inferior lobe

ll:

Lateral lemniscus

m:

Medial fiber part of TL

M:

Medial granular cell part of TL

MLL:

Mechanosensory lateral line lobe

mz:

Medial zone of mormyrid ELL

NAT:

Anterior tuberal nucleus

NLV:

Lateral valvular nucleus

NLVpl:

Posterolateral part of NLV of Ito and Yoshimoto (1990)

NLVpm:

Posteromedial part of NLV of Ito and Yoshimoto (1990)

NM:

Medial octavolateral nucleus

NPC:

Nucleus paracommissuralis

NPE:

Nucleus praeeminentialis

NPEl:

Lateral part of NPE

NPEm:

Medial part of NPE

NSE:

Nucleus subeminentialis

NSV:

Nucleus subvalvularis

nII:

Optic nerve

NIII:

Oculomotor nucleus

NVm:

Trigeminal motor nucleus

nVIII:

Octaval nerve

P:

Pituitary

pc:

Posterior commissure

RCLS:

Rhombencephalic CLS

pLL:

Posterior lateral line nerve

Rm :

Middle reticular formation

rV:

Central root of trigeminal nerve

rVII:

Central root of facial nerve

SAC:

Stratum album centrale

SFGS:

Stratum fibrosum et griseum superficiale

SGC:

Stratum griseum centrale

SGN:

Secondary gustatory nucleus

SM :

Stratum marginale

SO:

Stratum opticum

SOP:

Secondary octaval population

SPV:

Stratum periventriculare

SV:

Vascular sac

TE:

Telencephalon

TL:

Torus longitudinalis

TLa:

Torus lateralis

TO:

Optic tectum

TS:

Torus semicircularis

TSc:

Central nucleus of TS

TSl:

Lateral nucleus of TS

TSvl:

Ventrolateral nucleus of TS

VC:

Valvula cerebelli

VCl:

Lateral lobe of VC

VCm:

Medial lobe of VC

vlz:

Ventrolateral zone of mormyrid ELL

References

  • Bastian, J. (1981). Electrolocation II. The effects of moving objects and other electric stimuli on the activity of two categories of posterior lateral line lobe cells in Apteronotus albifrons. Journal of Comparative Physiology, 144, 481–494.

    Article  Google Scholar 

  • Bastian, J. (1986). Electrolocation: Behavior, anatomy, and physiology. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception (pp. 577–612). Wiley.

    Google Scholar 

  • Bell, C. C. (1981). An efference copy which is modified by reafferent input. Science, 214, 450–453.

    Article  CAS  PubMed  Google Scholar 

  • Bell, C. C. (2001). Memory-based expectation in electrosensory systems. Current Opinion in Neurobiology, 11, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Bell, C. C. (2002). Evolution of cerebellum-like structures. Brain, Behavior and Evolution, 59, 312–326.

    Article  PubMed  Google Scholar 

  • Bell, C. C., Grant, K., & Serrier, J. (1992). Corollary discharge effects and sensory processing in the mormyrid electrosensory lobe: I. Field potentials and cellular activity in associated structures. Journal of Neurophysiology, 68, 843–858.

    Article  CAS  PubMed  Google Scholar 

  • Brochu, G., Maler, L., & Hawks, R. (1990). Zebrin II: A polypeptide antigen expressed exclusively in Purkinje cells reveals compartments in rat and fish cerebellum. The Journal of Comparative Neurology, 291, 538–552.

    Article  CAS  PubMed  Google Scholar 

  • Bullock, T. H., Bodznick, D. A., & Northcutt, R. G. (1983). The phylogenetic distribution of electroreception: Evidence of convergent evolution of a primitive vertebrate sense modality. Brain Research Reviews, 6, 25–46.

    Article  Google Scholar 

  • Butler, A. B., & Saidel, W. N. (1991). Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). Brain, Behavior and Evolution, 38, 127–153.

    Article  CAS  PubMed  Google Scholar 

  • Demski, L. S. (1983). Behavioral effects of electrical stimulation of the brain. In R. E. Davis & R. G. Northcutt (Eds.), Fish neurobiology (Vol. 2, pp. 317–359). The University of Michigan Press.

    Google Scholar 

  • Finger, T. E. (1984). Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. The Journal of Comparative Neurology, 229, 129–151.

    Article  CAS  PubMed  Google Scholar 

  • Finger, T. E. (1986). Electroreception in catfish: Anatomy and electrophysiology. In T. H. Bullock & W. Heiligenberg (Eds.), Electroreception (pp. 287–317). Wiley.

    Google Scholar 

  • Finger, T. E. (2000). Ascending spinal systems in the fish, Prionotus carolinus. The Journal of Comparative Neurology, 422, 106–122.

    Article  CAS  PubMed  Google Scholar 

  • Folgueira, M., Riva-Mendoza, S., Ferreño-Galmán, N., Catro, A., Bianco, I. H., Anadón, R., & Yáñez, J. (2020). Anatomy and connectivity of the torus longitudinalis of the adult zebrafish. Frontier in Neural Circuits, 14, 8.

    Article  CAS  Google Scholar 

  • Folgueira, M., Sueiro, C., Rodríguez-Moldes, I., Yáñez, J., & Anadon, R. (2007). Organization of the torus longitudinalis in the rainbow trout (Oncorhynchus mykiss): An immunohistochemical study of the GABAergic system and a DiI tract-tracing study. The Journal of Comparative Neurology, 503, 348–370.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, M. A., & Northmore, D. P. M. (1996). The role of torus longitudinalis in equilibrium orientation measured with the dorsal light reflex. Brain, Behavior and Evolution, 48, 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Hagio, H., Kawaguchi, M., Abe, H., & Yamamoto, N. (2021). Afferent and efferent connections of the nucleus prethalamicus in the yellowfin goby Acanthogobius falvimanus. The Journal of Comparative Neurology, 529(1), 87–110.

    Article  PubMed  Google Scholar 

  • Hofmann, M. H., Wojtenek, W., & Wilkens, L. A. (2002). Central organization of the electrosensory system in the paddlefish (Polyodon spathura). The Journal of Comparative Neurology, 446, 25–36.

    Article  PubMed  Google Scholar 

  • Imura, K., Yamamoto, N., Sawai, N., Yoshimoto, M., Yang, C.-Y., Xue, H.-G., & Ito, H. (2003). Topographic organization of an indirect telencephalo-cerebellar pathway through the nucleus paracommissuralis in a teleost, Oreochromis niloticus. Brain, Behavior and Evolution, 61, 70–90.

    Article  PubMed  Google Scholar 

  • Ito, H. (1970). Fine structures of the carp tectum opticum. Journal für Hirnforschung, 12, 325–354.

    PubMed  Google Scholar 

  • Ito, H. (1971). Fine structure of the carp torus longitudinalis. Journal of Morphology, 135, 153–164.

    Article  Google Scholar 

  • Ito, H., Butler, A. B., & Ebbesson, S. O. E. (1980). An ultrastructural study of the normal synaptic organization of the optic tectum and the degenerating tectal afferent from retina, telencephalon, and contralateral tectum in a teleost, Holocentrus rufus. The Journal of Comparative Neurology, 191, 639–659.

    Article  CAS  PubMed  Google Scholar 

  • Ito, H., & Kishida, R. (1978). Afferent and efferent fiber connections of the carp torus longitudinalis. The Journal of Comparative Neurology, 181, 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Ito, H., Murakami, T., & Morita, Y. (1982). An indirect telencephalocerebellar pathway and its relay nucleus in teleosts. Brain Research, 249, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Ito, H., Yamamoto, N., Yoshimoto, M., Sawai, N., Yang, C.-Y., Xue, H.-G., & Imura, K. (2003). Fiber connections of the torus longitudinalis in a teleost: Cyprinus carpio re-examined. The Journal of Comparative Neurology, 457, 202–211.

    Article  PubMed  Google Scholar 

  • Ito, H., & Yoshimoto, M. (1990). Cytoarchitecture and fiber connections of the nucleus lateralis valvulae in the carp (Cyprinus carpio). The Journal of Comparative Neurology, 298, 385–399.

    Article  CAS  PubMed  Google Scholar 

  • Kishida, R. (1979). Comparative study on the teleostean optic tectum. Lamination and cytoarchitecture. Journal für Hirnforschung, 20, 57–67.

    CAS  PubMed  Google Scholar 

  • McCormick, C. A. (1982). The organization of the octavolateralis area in actinopterygian fishes: A new interpretation. Journal of Morphology, 171, 159–181.

    Article  PubMed  Google Scholar 

  • McCormick, C. A., & Braford, M. R., Jr. (1994). Organization of inner ear endorgan projections in the goldfish, Carassius auratus. Brain, Behavior and Evolution, 43, 189–205.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, C. A., & Hernandez, D. V. (1996). Connections of octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain, Behavior and Evolution, 47, 113–137.

    Article  CAS  PubMed  Google Scholar 

  • Meek, J. (1981). A Golgi-electron microscopic study of goldfish optic tectum. II. A quantitative aspects of synaptic organization. The Journal of Comparative Neurology, 199, 175–190.

    Article  CAS  PubMed  Google Scholar 

  • Meek, J. (1992). Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences. Neuroscience, 48, 249–283.

    Article  CAS  PubMed  Google Scholar 

  • Meek, J., Grant, K., & Bell, C. (1999). Structural organization of the mormyrid electrosensory lateral line lobe. Journal of Experimental Biology, 202, 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  • Meek, J., Grant, K., Sugawara, Y., Hafmans, T. G. M., Veron, M., & Denizot, J. P. (1996). Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry, and synaptology. The Journal of Comparative Neurology, 375, 43–65.

    Article  CAS  PubMed  Google Scholar 

  • Meek, J., Nieuwenhuys, R., & Elsevier, D. (1986). Afferent and efferent connections of cerebellar lobe C3 of the mormyrid fish Gnathonemus petersi: An HRP study. The Journal of Comparative Neurology, 245, 342–358.

    Article  CAS  PubMed  Google Scholar 

  • Meek, J., & Schellart, N. A. M. (1978). A Golgi study of goldfish optic tectum. The Journal of Comparative Neurology, 182, 89–122.

    Article  CAS  PubMed  Google Scholar 

  • Mikami, Y., Yoshida, T., Matsuda, N., & Mishina, M. (2004). Expression of glutamate receptor ∂2 in neurons with cerebellum-like wiring. Biochemical and Biophysical Research Communications, 322, 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki, T., Kato, A., Ikenaga, T., Hagio, H., & Yamamoto, N. (2019). A lambda-shaped retractor lentis muscle in the yellowfin goby Acanthogobius flavimanus. Journal of Morphology, 280, 526–533.

    Article  PubMed  Google Scholar 

  • Murakami, T., Morita, Y., & Ito, H. (1983). Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus. The Journal of Comparative Neurology, 216, 115–131.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, J. S., Grande, T. C., & Wilson, M. V. H. (2016). Fishes of the world (5th ed.). Wiley.

    Book  Google Scholar 

  • New, J. G., Coombs, S., McCormick, C. A., & Oshel, P. E. (1996). Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. The Journal of Comparative Neurology, 366, 534–546.

    Article  CAS  PubMed  Google Scholar 

  • Noro, S., Yamamoto, N., Ishikawa, Y., Ito, H., & Ijiri, K. (2007). Studies on the morphology of the inner ear and semicircular canal endorgan projections of ha, a medaka behavior mutant. The Fish Biology Journal MEDAKA, 11, 31–41.

    Google Scholar 

  • Northmore, D. P. M. (1984). Visual and saccadic activity in the goldfish torus longitudinalis. Journal of Comparative Physiology-A, 155, 333–340.

    Article  Google Scholar 

  • Northmore, D. P. M. (2011). The optic tectum. In A. P. Farrell (Ed.), Encyclopedia of fish physiology: From genome to environment (Vol. 1, pp. 131–142). Elsevier.

    Chapter  Google Scholar 

  • Northmore, D. P. M. (2017). Holding visual attention for 400 million years: A model of tectum and torus longitudinalis in teleost fishes. Vision Research, 131, 44–56.

    Article  PubMed  Google Scholar 

  • Northmore, D. P. M., Williams, B., & Vanegas, H. (1983). The teleostean torus longitudinalis: Responses related to eye movements, visuotopic mapping, and functional relations with the optic tectum. Journal of Comparative Physiology-A, 150, 39–50.

    Article  Google Scholar 

  • O’Marra, S. K., & McCormick, C. A. (1999). Organization and connections of the dorsal descending nucleus and other presumed acoustic areas in the brainstem of the teleost fish, Astronotus ocellatus. Hearing Research, 129, 7–19.

    Article  PubMed  Google Scholar 

  • Robles, E., Fields, N. P., & Baier, H. (2021). The zebrafish visual system transmits dimming information via multiple segregated pathways. The Journal of Comparative Neurology, 529, 539–552.

    Article  PubMed  Google Scholar 

  • Tong, S.-L., & Finger, T. E. (1983). Central organization of the electrosensory lateral line system in bullhead catfish Ictalurus nebulosus. The Journal of Comparative Neurology, 217, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Vanegas, H., & Ito, H. (1983). Morphological aspects of the teleostean visual system: A review. Brain Research Reviews, 6, 117–137.

    Article  Google Scholar 

  • Vanegas, H., Williams, B., & Fresman, J. A. (1979). Response to stimulation of marginal fibers in the teleostean optic tectum. Experimental Brain Research, 34, 335–349.

    Article  CAS  PubMed  Google Scholar 

  • Wullimann, M. F., & Roth, G. (1994). Descending telencephalic information reaches longitudinal torus via the dorsal preglomerular nucleus in the teleost fish Pantodon buchholzi: A case of neural preaptation. Brain, Behavior and Evolution, 44, 338–352.

    Article  CAS  PubMed  Google Scholar 

  • Xue, H.-G., Yamamoto, N., Yang, C.-Y., Kerem, G., Yoshimoto, M., Imura, K., & Ito, H. (2003). Fiber connections of the torus longitudinalis and optic tectum in holocentrid teleosts. The Journal of Comparative Neurology, 462, 194–212.

    Article  PubMed  Google Scholar 

  • Xue, H.-G., Yang, C.-Y., Ito, H., Yamamoto, N., & Ozawa, H. (2006). Primary and secondary trigeminnal projections in a cyprinid teleost, carp Cyprinus carpio. The Journal of Comparative Neurology, 499, 626–644.

    Article  PubMed  Google Scholar 

  • Yamamoto, N. (2018). The brain of fish. In S. Shigeno, T. Nomura, & Y. Murakami (Eds.), The strange world of brain – As revealed from genes. (In Japanese) (pp. 289–331). Isshiki Shuppan.

    Google Scholar 

  • Yamamoto, N., Ishikawa, Y., Yoshimoto, M., Xue, H.-G., Bahaxar, N., Sawai, N., Yang, C.-Y., Ozawa, H., & Ito, H. (2007). A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model. Brain, Behavior and Evolution, 69, 96–104.

    Article  PubMed  Google Scholar 

  • Yamamoto, N., & Ito, H. (2005). Fiber connections of the central nucleus of semicircular torus in cyprinids. The Journal of Comparative Neurology, 491, 186–211.

    Article  PubMed  Google Scholar 

  • Yamamoto, N., Kato, T., Okada, Y., & Somiya, H. (2010). Somatosensory nucleus in the torus semicircularis of cyprinid teleosts. The Journal of Comparative Neurology, 518, 2475–2502.

    PubMed  Google Scholar 

  • Yang, C.-Y., Yoshimoto, M., Xue, H.-G., Yamamoto, N., Imura, K., Sawai, N., Ishikawa, Y., & Ito, H. (2004). Fiber connections of the lateral valvular nucleus in a percomorph teleost, Tilapia (Oreochromis) niloticus. The Journal of Comparative Neurology, 474, 209–226.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamamoto, N., Hagio, H. (2021). Cerebellum-Like Systems in Actinopterygian Fishes with a Special Focus on the Diversity of Cerebellum-Like System in the Mesencephalon. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_2

Download citation

Publish with us

Policies and ethics