Skip to main content

Counterfactual Explanations for Survival Prediction of Cardiovascular ICU Patients

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12721))

Included in the following conference series:

Abstract

In recent years, machine learning methods have been rapidly implemented in the medical domain. However, current state-of-the-art methods usually produce opaque, black-box models. To address the lack of model transparency, substantial attention has been given to develop interpretable machine learning methods. In the medical domain, counterfactuals can provide example-based explanations for predictions, and show practitioners the modifications required to change a prediction from an undesired to a desired state. In this paper, we propose a counterfactual explanation solution for predicting the survival of cardiovascular ICU patients, by representing their electronic health record as a sequence of medical events, and generating counterfactuals by adopting and employing a text style-transfer technique. Experimental results on the MIMIC-III dataset strongly suggest that text style-transfer methods can be effectively adapted for the problem of counterfactual explanations in healthcare applications and can achieve competitive performance in terms of counterfactual validity, BLEU-4 and local outlier metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/zhendong3wang/counterfactuals-for-event-sequences.

References

  1. Ahmad, F.S., et al.: A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs). J. Ambient Intell. Hum. Comput. 30, 1 (2020)

    Google Scholar 

  2. Bagattini, F., Karlsson, I., Rebane, J., Papapetrou, P.: A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records. BMC Med. Inform. Decis. Mak. 19(1), 7:1–7:20 (2019)

    Google Scholar 

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of SIGMOD international conference on Management of data, pp. 93–104. New York (2000)

    Google Scholar 

  4. Caicedo-Torres, W., Gutierrez, J.: ISeeU: visually interpretable deep learning for mortality prediction inside the ICU. Biomed. Inform. 98, 103269 (2019)

    Google Scholar 

  5. Cao, Y., Shui, R., Pan, L., Kan, M.Y., Liu, Z., Chua, T.S.: Expertise style transfer: a new task towards better communication between experts and laymen. In: ACL, pp. 1061–1071 (2020)

    Google Scholar 

  6. Esteban, C., Schmidt, D., Krompaß, D., Tresp, V.: Predicting sequences of clinical events by using a personalized temporal latent embedding model. In: International Conference on Healthcare Informatics, pp. 130–139 (2015)

    Google Scholar 

  7. Hsieh, Y.Z., Su, M.C., Wang, C.H., Wang, P.C.: Prediction of survival of ICU patients using computational intelligence. Comput. Biol. Med. 47, 13–19 (2014)

    Article  Google Scholar 

  8. Huang, J., Osorio, C., Sy, L.W.: An empirical evaluation of deep learning for ICD-9 code assignment using MIMIC-III clinical notes. Comput. Meth. Prog. Biomed. 177, 141-153 (2019)

    Google Scholar 

  9. Johnson, A.E.W.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1), 160035 (2016)

    Google Scholar 

  10. Lee, J.W.: Fluid and Electrolyte Disturbances in Critically Ill Patients. Electrolyte Blood Press (2010)

    Google Scholar 

  11. Kaji, D.A.: An attention based deep learning model of clinical events in the intensive care unit. PLOS ONE 14(2), e0211057 (2019)

    Google Scholar 

  12. Karlsson, I., Rebane, J., Papapetrou, P., Gionis, A.: Explainable time series tweaking via irreversible and reversible temporal transformations. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 207–216 (2018)

    Google Scholar 

  13. Li, J., Jia, R., He, H., Liang, P.: Delete, retrieve, generate: a simple approach to sentiment and style transfer. In: NAACL-HLT (2018)

    Google Scholar 

  14. Molnar, C.: Interpretable Machine Learning - A Guide for Making Black Box Models Explainable (2019)

    Google Scholar 

  15. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical Black-Box Attacks against Machine Learning (2017). arXiv:1602.02697

  16. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of ACL, pp. 311–318. Philadelphia, Pennsylvania, USA (2002)

    Google Scholar 

  17. Pryzant, R., Richard, D.M., Dass, N., Kurohashi, S., Jurafsky, D., Yang, D.: Automatically neutralizing subjective bias in text. In: Association for the Advancement of Artificial Intelligence (AAAI) (2020)

    Google Scholar 

  18. Rebane, J., Samsten, I., Papapetrou, P.: Exploiting complex medical data with interpretable deep learning for adverse drug event prediction. Artif. Intell. Med. 109, 101942 (2020)

    Google Scholar 

  19. Sudhakar, A., Upadhyay, B., Maheswaran, A.: “Transforming” delete, retrieve, generate approach for controlled text style transfer. In: Proceedings of EMNLP-IJCNLP, pp. 3269–3279. Hong Kong, China (2019)

    Google Scholar 

  20. Tonekaboni, S., Joshi, S., McCradden, M.D., Goldenberg, A.: What clinicians want: contextualizing explainable machine learning for clinical end use. In: Machine Learning for Healthcare Conference, pp. 359–380 (2019)

    Google Scholar 

  21. Van Looveren, A., Klaise, J.: Interpretable Counterfactual Explanations Guided by Prototypes (2020). arXiv:1907.02584

  22. Verma, S., Dickerson, J., Hines, K.: Counterfactual Explanations for Machine Learning: A Review (2020). arXiv:2010.10596

  23. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR. Technical report, Social Science Research Network (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part the EXTREMUM collaborative project of the Digital Futures framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Samsten, I., Papapetrou, P. (2021). Counterfactual Explanations for Survival Prediction of Cardiovascular ICU Patients. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77211-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77210-9

  • Online ISBN: 978-3-030-77211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics